Kleinburg-Tardus 13.5
\nRandomized divide Romatur: methods, findus and Quicknot
\nGiven S = 3a₁a_x,...,a_n1 a not of distinct numbers
\nDefinition of *method's* of S
\nwhen
$$
n=2k+1
$$
 for some integer k then the mudars of S
\n $a_{i_1}a_{i_2}...a_{i_k}a_{i_{k+1}}a_{i_{k+1}}...a_{i_n}$ for S
\na_{ii} $aa_{i_1}...a_{i_k}a_{i_{k+1}}...a_{i_{k+1}}$

Median Problem
Given a set
$$
S = ha_{1}a_{2} \cdot \cdot \cdot a_{n} \setminus \text{Consider } x
$$

numbers
Find the median of S

Easy if we may un sor hus. This requires M(vilogy) (as you will see in Durs53) can we do it faster?

Recall the pivoting idea in quicksout (QS) · Chor an element a ES Cin the standard C2S Ehis c's the last element · construct the following partition of S $o(f)$ $\begin{array}{c|c} \hline \left(1 & a \right) & a \left(1 & a \right) \\ \hline \left(1 & a \right) & \left(1 & a \right) \\ \hline \left(1 & a \right) & \left(1 & a \right) \\ \hline \end{array}$ · Sort S and St recorsively Try the same idea for the median (callitan) $\sqrt{2}$ $\sqrt{2}$ S^{-} S^{\dagger} 151 = k then a is the nuclear m if 15/7k they misthe ktl) st element of 5 $\frac{1}{2}$ 15^{-1} < k then m is the k+1- $(1+15))$, t $\partial \theta$ element of 15^t (

Conclusion: we need to solve the more general

select Gok) Given 5--19 , in - -an } all distinct numbers and k c- 11,2 - - ⁿ } Find the element ain (^k the element g.µ in the ,a

So median of S is the return of Select $(s_i \frac{n}{2})$ when ^u is even one select (^S , ¥) when ^u is odd

 $Select (S_k k)$: $Choon$ asphtto a_{ζ} ES 55.549551936427 $S^{\dagger}:=\{q_{j}\in S | q_{j}>q_{i}\}$ $16|5| = k$ ^l then return ai $E182$ if $151 \ge k$ then return Select ($5/k$) Elze vetory select (st, k-(ItIST)

Clearly Select (S_IK) vetwors the k th element of s what do we want from ^a splitter ? • we always make at most one recursive call

- we groags mant to be the size of the discarded set each time
- of the 11 mold (almost) half the problem sin in each step
- Suppon we can guarantee min 5151,1st152 En sopport according the rouning time $T(s)$ on input o t size u sahifies i ze u schifico
 i ze u schifico
 $T(\mu) \leq T((1-\epsilon) n) + C$ Wo - k beside , recursive calls

$$
T(n) \le Cn + (1-\epsilon)Cn + (1-\epsilon)^{2}Cn + \cdots
$$

\n
$$
Cn \left[1 + (1-\epsilon) + (1-\epsilon)^{2} + \cdots \right]
$$

\n
$$
Cn \sum_{i=0}^{\infty} (1-\epsilon)^{i} = Cn \frac{1}{1-(1-\epsilon)} = \frac{Cn}{\epsilon} = \frac{C}{\epsilon}n
$$

This is linear time!

Randomselects,h) : Choon the splitto ai uniforme continuous from S

RandomSelect(
$$
S_{h}
$$
): Choose the system of the split to a:
\nuniformly at common from S
\nWe expect to reduce IS (S_{1} or constant
\n $\begin{array}{|c|c|c|}\n\hline\n\text{f} & \text{middle} & \text{a}+\text{m}$
\n $\begin{array}{|c|c|}\n\hline\n\text{f} & \text{middle} & \text{a}+\text{m}} \\
\hline\n\text{f} & \text{middle} & \text{a}+\text{m} \\
\hline\n\text{f} & \text{middle} & \text{a}+\text{m} \\
\hline\n\text{f} & \text{middle} & \text{a}+\text{m} \\
\hline\n\text{f} & \text{middle} & \text{r} \\
\text{f} & \text{m吉} & \text{r} \\
\text{f} & \text{m, m.} \\
\hline\n\text{f} & \text{m.} \\
\text{f} &$

Pharis

$$
\rho
$$
han j: achulzet S¹ sahibio $\left(\frac{3}{4}\right)^{jtf}$ $< |S'| \leq \left(\frac{3}{4}\right)^{j} n$

We start in plane
$$
j=0
$$

\nIf we chosen q central split to the 1 plane with q line with q

We expect (a t must)
$$
2 \text{ i}
$$
 trahivas in plan j so
\n
$$
E(X_{j}) \leq 2cn \left(\frac{3}{7}\right)^{j}
$$
\n
$$
H_{\text{true}} E(X) = E\left(\frac{5}{3}X_{j}\right)
$$
\n
$$
= \sum_{j} E(X_{j})
$$
\n
$$
\leq 2cn \sum_{j} \left(\frac{3}{7}\right)^{j}
$$
\n
$$
\leq 2cn \sum_{k=1}^{\infty} \left(\frac{3}{7}\right)^{k} = 2cn \left(\frac{1}{1-\frac{3}{7}}\right) = 8cn
$$
\n
$$
\frac{C_{\text{equation}}}{\text{equation}} \leq H_{\text{true}} \text{ expected}
$$
\n
$$
H_{\text{true}} \text{ (a)}
$$

than IQs (5) ⁼ quick sort on ^s when pivot is a random element from S

Some changes a 2 above

\n• Small changes: if the chosen
$$
a_i
$$
 is not central than pick a new random a_i

\n(x) The expected x of repubit was before we have a central split to its 2 (a) probability of $s = 2$

\nThus, gives, we

\n(13.19) The expected numbers time on S excluding

\nFigure 1: the actual list of S (a) probability of $s = 2$

\nThus, gives, we

\n(13.19) The expected numbers into the sum of $(\frac{3}{4})^{\frac{1}{3}} < |S'| \le n \cdot (\frac{3}{4})^{\frac{1}{3}}$

\nBy (a) the actual set S is a bin S' union of $(\frac{3}{4})^{\frac{1}{3}} < |S'| \le n \cdot (\frac{3}{4})^{\frac{1}{3}}$

\nBy (b) the expected value of $\frac{1}{4}$ and $\frac{1}{4}$.)

\nWe need to be on x if s subproblem of xy is in S' with the same form, $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{$

As subproblems of type
$$
j
$$
 on disjoint and each have
\nsize at least $\left(\frac{3}{6}\right)^{3t}$ (lim an of two)
\n
$$
\frac{n}{n \cdot \left(\frac{3}{4}\right)^{3t}} = \left(\frac{4}{3}\right)^{3t}
$$
 such solutions of type j

\nBy (G) the expected time symbol on each subproblem
\nof type j is $O(n\left(\frac{3}{6}\right)^{3})$

\nThus an at most $\left(\frac{4}{3}\right)^{3t}$ such solutions of type j

\nSo $expech\theta$ from on all of these is

\n $O(n \cdot \left(\frac{3}{4}\right)^{3} \cdot \left(\frac{4}{3}\right)^{t+1}) = O\left(\frac{4}{3}n\right) = O(n)$

\nThus an at most $\log_4 n = O(\log n)$

\ndifferent types

(13-21) The expected running him for RandQS tonantotndistinctnuw.tn is ⁰ (nlosn)

Cormen 7.4.2

Let X be the nonlocal composition made by
hamless on a nt of X is a random variable
Then X is a random variable
let
$$
z_1z_2 \cdots z_{n}
$$
 be the total value of the
elements in S and let the random variable
X_{ij} = 1 if z_0 and z_j are compound in the algorithm and
X_{ij} = 0 otherwise
Note: z_i and z_j are compound in the algorithm and
of thus is the pivot (all comparison with the input)
so $X = \sum x_{ij}$
left $Z_{ij} = \frac{1}{2}Z_{i}Z_{i}t_{ij} - iZ_{j}$
Let $Z_{ij} = \frac{1}{2}Z_{i}Z_{i}t_{ij} - iZ_{j}$
Then Z_{i} and Z_{j} are compared previously
if Z_{i} or Z_{j} is the first point

The probability of
$$
tlus
$$
 is $\frac{2}{|z_{ij}|} = \frac{2}{\sqrt{-1}t}$
\nNow we have $tlus + p(X_{ij}=1) = \frac{2}{\sqrt{-1}t}$
\nSo $E(X_{ij}) = \frac{2}{\sqrt{-1}t}$ and hence
\n
$$
E(X) = E\left[\sum_{i=1}^{n} \sum_{j=1}^{n} X_{ij}\right]
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{j=1}^{n} E(X_{ij})
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{j=1}^{n} E(X_{ij})
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{j=1}^{n} \sum_{k=1}^{n} E(X_{ij})
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}E
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{1}{k}
$$
\n
$$
= \sum_{i=1}^{n-1} \sum_{k=1}^{n} E(X_{ij})
$$