Perfect hashing Corner 11.5

Kuys with h(x)=j are rehashed into
 Second table Sj of size mj usins
 Som h, G Slpmj

P: Then are
$$\binom{n}{2}$$
 possible collisions
let $Z_{ke} = \frac{1}{2} (if h(k) = h(e))$
 $p(Z_{kc} = 1) \leq \frac{1}{2} = \frac{1}{2}$ as $h i = \frac{1}{2}$
when $h \neq e$
Then $Z = \sum_{ke} Z_{ke}$ is the $\# collisions$
 k_{ees}
 $k \neq e$

$$E(Z) = E\left(\sum_{\substack{k,l \in S \\ k \neq l}} Z_{k,l}\right) = \sum_{\substack{k,l \in S \\ k \neq l}} E(Z_{k,l}) \leq \sum_{\substack{k,l \in S \\ k \neq l}} \frac{1}{n^2} \leq \frac{1}{2}$$

By Markov's inequality we get

$$p(z \ge 1) \le \frac{E(z)}{1} = E(z) < \frac{1}{2}$$

So $p(z=0) \ge \frac{1}{2}$ as claimed
By repeating the choice of the rubit there are no
collisions worth these choice, we can obtain a
collision free heatings of the always.
The expected of repetitions (choosing hell)
is at most $\frac{1}{p(z=0)} \le \frac{1}{16} = 2$
Problem: If a is large a table of
Size n^2 is too large
Solution: un this idea only at the
Second level

· At level I we una table of size m=n only · let he & be the hash forchion we unat level I

()

Theorem II.10
Suppon we store a keys in a heat table of size
$$m = n$$

Using universal heating and let $N_{j-1} \neq b_0 \mid (2, \dots, m)$
be the number of keys heated to $j = (h(s) = j)$.
Then $E(\sum_{j=0}^{m-1} n_j^2) < 2n \quad (N_j \text{ is a rembon staniable})$
 $proof:$ Recall that $\forall a \in \mathbb{Z}^+ \quad a + 2\binom{n}{2} = a + a(a-1) = a^2$
 $E(\sum_{j=0}^{m-1} n_j^2) = E(\sum_{j=0}^{m-1} n_j + 2\binom{n}{2})$
 $= E(\sum_{j=0}^{m-1} n_j + 2E(\sum_{j=0}^{m-1} n_j))$
 $= E(n) + 2E(r)$

when r is the total # collisions when we us h $\in \mathcal{S}$ By the universal hashing property $E(\Gamma) \leq \binom{n}{2} \cdot \frac{1}{m} = \binom{n}{2} \cdot \frac{1}{n} = \frac{n-1}{2}$ Hence $E(\sum_{j=0}^{m-1} n_j^{-1}) \leq n + \lambda \cdot \frac{n-1}{2} < 2M$

Corollary II.1.1 Level 1 Level 2
With the hashing scheme chorn
$$(m=n m_{j}=n_{j}^{2} jebol,...,n)$$

The expected total storage for the secondary hash takes
is less than $2n$
Proof
 $E(\sum_{j=0}^{m-1} m_{j}^{2}) < 2n$ by theorem II.10 D.
Corollary II.12 Using a hoshing scheme as above the
probability that we need mon them $4n$ total storan
for second level tables is less than $\frac{1}{2}$
Proof by Markov's inequality
 $P(\sum_{j=0}^{m-1} m_{j}^{2} = 4n) \leq \frac{E(\sum_{j=0}^{m-1} m_{j}^{2})}{4n} < \frac{2n}{4n} = \frac{1}{2}$
Condusion:
Using a few triab to find a good h GSC
when $8l$ is universal we can
quickly obtain a scheme
 $(h at level 1, h_{1}h_{2} - h_{m-1} at level 2)$
which len a reasonable amount of space