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DM551/MM851 – Fall 2023 – Weekly Note 2
Stuff covered in week 36
Rosen 6.1-6.5.

Lecture September 12

• Last part of Rosen 6.5 (if any remains)

• Rosen 7.1-7.2

Exercises in Week 37

Note that you have two exercise sections in Week 37

Remember to try to solve as many exercises as possible. It is important that you practice
on the different ways of counting so that you can use these skills later in the course.

• Left over exercises from Week 36.

• Section 6.4: 9,16,24,26,28,32,34

• Section 6.5: 3,6,12,14,20,32,52

• Discuss the proofs of Theorem 4 on page 443.

• Read Section 6.6 in the book and be ready to discuss how one can produce all k-
permutations and all k-combinations of an n-set efficiently.

1 Notes on Combinatorial proofs

The purpose of this part of Weekly note 2 is to demonstrate some proofs. A subset X of
a set S is even (resp. odd) if |X|, the number of elements of X, is even (odd).

Theorem If S is a finite set with at least one element, then the number of even subsets
of S is the same as the number of odd subsets of S.

Proof: We will give two different proofs. First note that the theorem does not hold for
the empty set, so we must require that S is not empty. Let ES be the number of even
subsets of S and let OS be the number of odd subsets of S. Finally let n = |S|.
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1. There are exactly
(
n
k

)
ways of choosing a set with k elements from S. Recall the

binomial formula (x + y)n =
∑n

k=0

(
n
k

)
xn−kyk. If we insert x = 1 and y = −1 in

this formula we get 0 =
∑n

k=0

(
n
k

)
(−1)k. Now the theorem follows just by observing

that, in the sum above, every even subset contributes with 1 and every odd subset
contributes with -1.

2. The theorem clearly holds when n = 1, so consider a set S with n > 1 elements.
Fix an element s ∈ S and let S ′ = S \ {s}. Let es, os denote the number of even,
respectively odd subsets of S that contain s. Clearly every even (odd) subset of S
that contains s consists of s plus an odd (even) subset of S ′. Hence we have es = OS′

and os = ES′ . Finally observe that, by the sum rule, the number of even (odd)
subsets of S equals the number of even (odd) subsets that contain s plus the number
of even (odd) subsets of S that do not contain s. The later are subsets of S ′. Thus
we have

ES = es + ES′ = OS′ + ES′ = OS′ + os = OS

We now give another example of the usefulness of combinatorial arguments. For given
natural numbers k, n we let Sn,k = {(n1, n2, . . . , nk)|ni ≥ 0 and n1 + n2 + . . . + nk = n}.
Note that Sn,k is the set of all ordered k-tuples of non negative numbers for which the
sum of the elements in the tuple is n. From Rosen Section 6.5.3 we know that there are(
n+(k−1)

n

)
of these.

Theorem

∑
(n1,n2,...,nk)∈Sn,k

n!

n1! · n2! · . . . · nk!
= kn

Proof: We claim that both sides of the equality sign count the number of ways to distribute
n distinct balls in k distinct boxes. This is easy to see for the right side: we have k choices
for each of the n balls, so kn in total. Now let us show that the left side also counts the
number of ways to distribute n distinct balls in k distinct boxes. By Rosen Theorem 4 page
452 we have that for fixed n1, n2, . . . nk such that

∑k
i=1 ni = n there are n!

n1!·n2!·...·nk!
ways

to distribute the n distinct balls into boxes 1, 2, . . . , k so that ni balls are placed in box i.
Now we see that the left hand side counts the number of ways to distribute n distinct balls
in k distinct boxes by counting, for each of the

(
n+(k−1)

n

)
possible choices (n1, n2, . . . , nk)

of numbers of elements to put in each of the k boxes, the number of ways to distribute the
balls when we must put exactly ni balls in box i for i ∈ [n].
You can verify for yourself that when k = 2 the lefthand side is the same as

∑n
r=0

(
n
r

)
so

the formula is a generalization of Corollary 1 page 439 in Rosen.
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