
Institut for Matematik og Datalogi
Syddansk Universitet

September 12, 2023
JBJ

DM551/MM851 – Fall 2023 – Weekly Note 3

Stuff covered in Week 37:

• Rest of Rosen 6.5.

• Rosen 7.1

• Rosen 7.2.1-7.2.7 and 7.2.9.

Lectures in Week 38

• Section 7.3 pages 494-497 (This is the only part of Section 7.3 that is pensum.

• Rosen 7.4

• Notes by me on Random variables and the probabilistic method. See below

Exercises in Week 38

Remember that it will not necessarily be all exercises that are solved in the class so if there
is one or more that you want to see, you should inform your TA when you meet in class.

• Section 6.5: 38, 40, 43, 48, 58

• Section 7.1: 6, 12, 17, 36, 45

• Section 7.2: 15.
This simple but extremely important in-equality is called the union-bound and is
used very often.

• Section 7.2: 12, 23, 30,36,38

• Any remaining exercises from Week 37 that you would like to discuss.

1

Notes on indicator random variables

Let S be a sample space and let A be an event in S (A ⊆ S). Let XA be the random
variable which takes the value 1 when A occurs and 0 when A does not occour. That is,

XA(s) =

{
1 If s ∈ A
0 If s ̸∈ A

(1)

We say that XA is the indicator variable for the event A. When A is clear from the
context we drop the subscript A.

Theorem 1 Let A be an event in a sample space S and let X be the indicator variable
for A. Suppose the probability that A occurs is p (p(A) = p). Then expected value and
variance of X is given by E(X) = p and V (X) = p(1− p).

Proof:

E(X) = 0 · p(X = 0) + 1 · p(X = 1)

= 0 + 1 · p
= p.

For the variance we want to use the formula V (X) = E(X2) − (E(X))2. This is easy to
apply here since every indicator variable X satisfies that X(s) = X(s)2 for all s ∈ S. Now
we get

V (X) = E(X2) + (E(X))2

= E(X)− (E(X))2

= E(X)(1− E(X))

= p(1− p).

⋄

Why are indicator variables useful? Because they allow us to simplify several proofs and to
analyze probability of certain events with much less effort. Here is an example and there
will be many more in the following weeks.

Theorem 2 Consider n independent Bernoulli trials each of which have probability of
success equal to p. Let X be the random variable the denotes the number of successes in
these n trials. Then E(X) = np and V (X) = np(1− p).

2

Proof: Let Xi, i = 1, 2, . . . , n be the indicator random variable for the event that the
ith trial is a success (so p(Xi = 1) = p for all i = 1, 2, . . . , n). Then X =

∑n
i=1Xi so by

linearity of expected values we get E(X) =
∑n

i=1E(Xi) =
∑n

i=1 p = np. Furthermore,
as Xi and Xj are independent random variables (the experiments are independent) for all
distinct i, j we have V (X) =

∑n
i=1 V (Xi) =

∑n
i=1 p(1− p) = np(1− p). ⋄

3 Notes on the probabilistic method

The following important examples of the usefulness of the probabilistic method are not in
Rosen (Markov’s inequality is covered in Exercise 27 of Section 7.4):

Markov’s Inequality For any non-negative random variable X on a sample space S,

p(X ≥ t) ≤ E(X)

t

Proof: By Theorem 1 page 464 in Rosen we have E(X) =
∑

i∈X(S) p(X = i)i. Since

X(s) ≥ 0 for every s ∈ S this gives
E(X) ≥

∑
i∈X(S),i≥t p(X = i)i ≥ t

∑
i∈X(S),i≥t p(X = i) = p(X ≥ t)t. ⋄

First Moment Principle If E(X) ≤ t then p(X ≤ t) > 0.

Proof: Suppose p(X ≤ t) = 0. Then we have

E(X) =
∑

i∈X(S) p(X = i)i ≥
∑

i∈X(S),i>t p(X = i)i > t
∑

i∈X(S),i≥t p(X = i) = t, where

we used that p(X ≤ t) = 0. ⋄

A boolean variable x is a variable that can assume only two values 0 and 1. The sum
of boolean variables x1 + x2 + . . . + xk is defined to be 1 if at least one of the xi’s is 1
and 0 otherwise. The negation x of a boolean variable x is the variable that assumes the
value 1− x. Hence x = x. Let X be a set of boolean variables. For every x ∈ X there are
two literals, over x, namely, x itself and x. A clause C over a set of boolean variables
X is a sum of literals over the variables from X. The size of a clause is the number of
literals it contains. For example, if u, v, w are boolean variables with values u = 0, v = 0
and w = 1, then C = (u + v + w) is a clause of size 3, its value is 1 and the literals in C
are u, v and w. An assignment of values to the set of variables X of a boolean expression
is called a truth assignment. If the variables are x1, . . . , xk, then we denote a truth
assignment by t = (t1, . . . , tk). Here it is understood that xi will be assigned the value ti
for i ∈ {1, 2, . . . , k}.
The satisfiability problem, also called SAT, is the following problem. LetX = {x1, . . . , xn}
be a set of boolean variables and let C1, . . . , Cm be a collection of clauses for which every
literal is over X. Decide if there exists a truth assignment t = (t1, . . . , tn) to the variables

3

in X such that the value of every clause will be 1. This is equivalent to asking whether or
not the boolean expression F = C1 ∗ . . . ∗Cm can take the value 1. Depending on whether
this is possible or not, we say that F is satisfiable or unsatisfiable. Here ‘∗’ stands for
boolean multiplication, that is, 1 ∗ 1 = 1, 1 ∗ 0 = 0 ∗ 1 = 0 ∗ 0 = 0. For a given truth
assignment t = (t1, . . . , tn) and literal q we denote by q(t) the value of q when we use the
truth assignment t (i.e., if q = x3 and t3 = 1, then q(t) = 1− 1 = 0).

To illustrate the definitions, let X = {x1, x2, x3} and let C1 = (x1 + x3), C2 = (x2 + x3),
C3 = (x1+x3) and C4 = (x2+x3). Then it is not difficult to check that F = C1∗C2∗C3∗C4

is satisfiable and that taking x1 = 0, x2 = 1, x3 = 1 we obtain F = 1.

If all clauses have the same number k of literals, then we have an instance of k-SAT
(the example above is an instance of 2-SAT). Generally k-SAT is a very difficult problem
and you will see in the spring course “Complexity and Computability” that is one of the
so-called NP-complete problems for which no-one knows a polynomial algorithm.

Theorem A For every natural number k, every k-SAT formula with less than 2k clauses
is satisfiable.

Proof: Consider a random truth assignment which sets variable xi to 1 with probability
1
2
and to 0 with probability 1

2
for i = 1, 2, . . . , n. Note that by this assignment, each of the

2n possible truth assignments are equally likely (they all have probability 2−n).

Let X be the random variable defined on the set of all truth assignments which to a given
truth assignment t = (t1, . . . , tn) assigns the value X(t) = the number of clauses among
C1, C2, . . . , Cm which are not satisfied by t. Similarly, for each clause Ci we let the random
variable Xi take the value Xi(t) = 1 if t does not satisfy Ci and Xi(t) = 0 if t satisfies Ci.
Thus X(t) = X1(t)+X2(t)+ . . . +Xm(t). We call the Xi’s indicator random variables
and their expectations are easy to calculate:

E(Xi) = p(Xi = 1)1 + p(Xi = 0)0 = p(Xi = 1) = 2−k, since the i’th clause evaluates to 0
precisely if all k literals are 0 and each of these are 0 with probability 1/2.

Now we get, by linearity of expectations

E(X) =
∑m

i=1E(Xi) =
∑m

i=1 2
−k = 2−k

∑m
i=1 1 = m2−k < 1, since m < 2k.

Hence, by Markov’s inequality, p(X ≥ 1) ≤ E(X)
1

= E(X) < 1 so p(X = 0) > 0. This
shows that there is at least one of the 2n truth assignments which satisfies all m clauses. ⋄

The bound on the number of clauses in Theorem A is best possible: suppose we have
n = k and all the 2k clauses of size k over these variables (every clause contains each
variable either with or without negation), then clearly this instance is not satisfiable, since
no matter which truth assignment we take, some clause will have all literals evaluating to
0. But observe that removing just one we get a satisfiable instance by the theorem!

Using the same argument as above we get the following bound for general SAT (clauses
may have any size):

4

Theorem B Let F = C1 ∗ C2 ∗ . . . ∗ Cm be an instance of SAT1. If we have∑m
i=1 2

−|Ci| < 1, then F is satisfiable. ⋄

Corollary For all ϵ > 0 there exists a polynomial algorithm for solving any instance of
SAT over n variables x1, x2, . . . , xn in which all clauses have size at least ϵn.

Proof: Let ϵ > 0 be given and let F = C1 ∗C2 ∗ . . . ∗Cm over the variables x1, x2, . . . , xn

satisfy that |Ci| ≥ ϵn for each i ∈ {1, 2, . . . ,m}. Suppose first that m < 2ϵn. Then we have

m∑
i=1

2−|Ci| ≤
m∑
i=1

2−ϵn = m2−ϵn < 1

Hence it follows from Theorem B that F is satisfiable and our algorithm stops with a
“yes”. Clearly this can be checked in time polynomial in |F| since we just need to check
whether the number of clauses is less than 2ϵn. Note that in this case we do not find
a satisfying truth assignment! We just answer correctly that there exists one.

Now suppose that we found that there was at least 2ϵn clauses. Then we simply check all
the 2n possible truth assignments to see whether one of these satisfies F . If we find one
that does, we stop and answer “yes” otherwise, after checking that none of them satisfy
F , we answer “no”. The time required to do this is proportional to 2n|F|, where |F| is
the size of the formula F and hence of the input. Clearly |F| ≥ 2ϵn as all clauses have size

at least 1 (in fact |F| ≥ ϵn2ϵn). Form this we get that 2n ≤ |F| 1ϵ so the running time of

our algorithm is proportional to 2n|F| ≤ |F|1+ 1
ϵ which is a polynomial in |F| because ϵ is

a constant (when we have chosen it). ⋄

1Over variables x1, x2, . . . , xn but they play no role in the argument.

5

