
Institut for Matematik og Datalogi
Syddansk Universitet

November 7, 2023
JBJ

DM551/MM851 – Fall 2023 – Weekly Note 9

Second set of exam problems
They will be available both from the homepage and from itslearning by the end of the
week.

Stuff covered in week 45

I will cover Cormen 26.3 and start on the notes below on flows. We will spend the second
hour on November 9 on the midterm evaluation of the course.

Lectures in week 46
There are two lectures and I will cover the topics below in the given order.

• I cover the notes below on flows

• Cormen sections 5.1-5.4.3 Much of the first two sections is already known to you so
I will not cover that

• Kleinberg and Tardos 13.6 and Cormen 11.3.3 and 11.5

Exercises in week 46
There are more exercises listed than you can cover so I will cover the last 4 bullets at the
lecture on November 16. You should still try to solve them first yourselves!

• Left over assignments on recurrence realations

• Cormen 26.1-2, 26.1-3, 26.1-6, 26.1-7.

• Cormen 26.2-2, 26.2-3

• 26.2-10. Hint: think about extracting (s, t)-paths one by one and recue the flow in
the edges as you go along.

• Cormen 26.2-13. Hint add a suitable value to each capacity

• Cormen 26.3-1, 26.3-5 (note that you can prove this from the integrality thm, as I
did at the lecture).

• Suppose you are given a connected undirected graph G = (V,E) with costs on the
edges and your task is to give an algorithm which finds a minimum cost set of E ′ ⊆ E
edges whose removal disconnects the graph (that is the graphG−E ′ is not connected).
Explain how to do this in polynomial time (hint: use flows).

1

1 Notes on flows

Below are some notes on flows to give you a better understanding of some of the things I
cover(ed) at the lectures.

1.1 Complexity of the Edmonds-Karp Algorithm

Recall that the Edmonds-Karp algorithm finds a maximum flow by always augmenting
the current flow f along shortest (minimum number of arcs) (s, t)-paths in the residual
network Gf . To prove that the running time of this algoritm is O(|V ||E|2) we can argue
as follows (below I use E to denote the edges (arcs) as in Cormen):

1. We can find the next augmenting path or determine that there is no (s, t)-path in
the currect residual network Gf in time O(|V | + |E|) = O(|E|) as we assume that
G is connected. By the Max-Flow-Min-Cut theorem, if there is no (s, t)-path in Gf ,
then f is a maximum flow. It follows that we need to show that the total number of
augmenting paths used in the algorithm is O(|V ||E|).

2. Let P1, P2, . . . , Pr denote the sequence of augmenting paths that the algorithm finds
before termination. Also let f0 ≡ 0 and let f1, f2, . . . , fr be the flows after each aug-
mentation. That is, fi+1 is obtained from fi by augmenting by δ(Pi) units along Pi,
where δ(Pi) denotes the minimum residual capacity of an arc on Pi.

Claim 1: For all i ∈ {1, 2, . . . , r − 1} we have |E(Pi)| ≤ |E(Pi+1)|.

To prove this we use that the augmenting path Pi is found using breath first search
(BFS) in Gfi−1

, for i = 1, 2, . . . , r. Suppose that the distance from s to t in Gfi−1
is k,

then the BFS from s defines distance classes L0, L1, . . . , Lk from s where Lo = {s} and
t ∈ Lk. Let us call an arc from La to Lb forward,flat or backwards if, respectively
a = b− 1, a = b or a > b. As Pi is a shortest path, every arc (u, v) on Pi is forward.
Furthermore every (s, t)-path of length k in Gfi−1

uses only forward arcs.

Now consider which new arcs the new residual network Gfi may contain. The only
new arcs that can appear when going from Gfi−1

to Gfi are arcs that are opposite
of those on Pi and, by the remark above, each of these correspond to arc which are
backwards with respect to L0, L1, . . . , Lk. Thus in Gfi the distance from s to t is
at least k as every path which uses at least one arc which is flat (backwards) with
respect to L0, L1, . . . , Lk will have length at least k + 1 (k + 2). This shows that the
distance from s to t in Gfi is at least k so |E(Pi)| ≤ |E(Pi+1)|, for i = 1, . . . , r− 1. 2

Claim 2: There are at most |E| paths among P1, P2, . . . , Pr which have the same
lenght.

2

This follows from the fact that every time we augment along a shortest path Pi at
least one arc (u, v) which is forward wrt. the current distance classes L0, L1, . . . , Lk

will not be present in the next residual network, namely those arcs which have resid-
ual capacity δ(Pi). So after at most |E| augmentations there will be no forward
arc wrt. L0, L1, . . . , Lk and hence no (s, t)-path of length k in the current residual
network.

Now we can complete the proof of the complexity. The possible lengths of augmenting
paths are 1, 2, . . . , |V | − 1 so Claim 2 implies that the total number of augmenting paths
is at most |V ||E|, implying that the Edmonds-Karp algorithm runs in time O(|V ||E|2).2

1.2 The integrality theorem for flows

Recall that the integrality theorem for flows say that if we are given a flow network G =
(V,E), a capacity function c : E → Z0 and distinct vertices s, t of V , then there exists a
maximum flow f ∗ such that f ∗(u, v) is a non-negative integer for every arc (u, v) ∈ E. This
follows easily from the way the Ford Fulkerson (or the Edmonds-Karp) algorithm works by
induction over the number of augmenting paths we use before we reach a maximum flow.

To see that this simple theorem can be quite usefull let us prove the following claim (which
you are asked to prove in a different way in Exercise 26.3-5). A graph G = (V,E) is
d-regular if every vertex v ∈ V is incident to exactly d edges. A matching is perfect if it
is incident to all vertices of the graph.

Theorem Every d-regular bipartite graph G = (X, Y,E) has a perfect matching.

Proof:

As usual X, Y denote the two vertex sets of the bipartition. We can count the number
of edges in E by summing the degrees of vertices in X or in Y , so |X| = |Y | holds as
|E| = d|X| = d|Y |.
Now, as in Section 26.3 of Cormen, consider the flow network NG that we can build from
G by

• Orienting every edge xy ∈ E as the arc (x, y) from X to Y and give capacity 1 to
these.

• Adding a new vertex s and an arc (s, x) of capacity 1 for each x ∈ X.

• Adding a new vertex t and an arc (y, t) of capacity 1 for each y ∈ Y .

Now let f be the flow that has value 1 one every arc incident to s or t and 1
d
on every other

arc. It is easy to check that this is an (s, t)-flow that respects all capacities. The value of f
is |X| (= |Y |) so f is a maximum flow (the cut S = {s}, T = V \ {s} shows this). By the

3

integrality theorem there exist a flow f ′ such that |f ′| = |f | where f ′(u, v) is an integer for
all arcs (u, v). Now by Corollary 26.11 in Cormen, we obtain a matching of size |X| (and
hence it is perfect) by setting M = {xy ∈ E|f ′(x, y) = 1}. 2

1.3 Flows with general balances

In this section we consider a flow in a network N = (V,A, c) is a function f on the arcs so
that 0 ≤ f(u, v) ≤ c(u, v) holds for all arcs (u, v) ∈ A.

Recall that the balance vector of a flow f is the function

bf (v) =
∑
w∈V

f(v, w)−
∑
w∈V

f(w, v)

For every flow f we have
∑

v∈V bf (v) = 0 as every arc (u, v) has two contributions to the
sum, namely +f(u, v) for the vertex u (the arc goes out of u) and −f(u, v) for the vertex
v (the arc goes into v).

Now let b : V → R be an arbitrary function on the vertices of a digraph D so that∑
v∈V b(v) = 0. We want to find out whether there exists a flow f in N = (V,A, c) so

that bf (v) = bv for every v ∈ V . Such a flow is called feasible with respect to b, c. To
see that a feasible flow may not exist consider the network consisting of only one arc (u, v)
with c(u, v) = 1 and set b(u) = 2, b(v) = −2. A lot of important problems (including the
problem of deciding whether a bipartite graph has a perfect matching) can be formulated
as a feasible flow problem. So we need an algorithm that can find a feasible flow whenever
one exists. We will use N = (V,A, c, b) to denote a directed graph with a capacity function
c on the arcs and a prescribed balance vector b. Given such a network we can form a new
network N ′ = (V ∪ {s, t}, A′, c′, s, t) by adding vertices and arcs to N as follows:

• Partition the vertices of V into three sets V+, V−, V0 where
V+ = {v|b(v) > 0}, V0 = {v|b(v) = 0} and V− = {v|b(v) < 0}.

• Add two new vertices s, t

• Add an arc from s to every vertex v ∈ V+ and give such an arc (s, v) capacity b(v).

• Add an arc from every vertex u ∈ V− to t and give such an arc (u, t) capacity −b(u).

Theorem The network N = (V,A, c, b) has a feasible flow if and only the maximum (s, t)-
flow in the network N ′ has value

∑
v∈V+

b(v).

Proof: Suppose first that f is a feasible flow in N , so we have bf (v) = b(v) for every v ∈ V .
Then we obtain an (s, t)-flow f ′ in N ′ by setting f ′(u, v) = f(u, v) for every arc (u, v) ∈ A,
setting f ′(s, v) = b(v) for every arc (s, v) that we added above and setting f ′(u, t) = −b(u)

4

for every arc (u, t) that we added above. It is easy to check that we have

bf ′(v) =

0 if v ̸∈ {s, t}∑

v∈V+
b(v) if v = s∑

u∈V−
b(v) = −

∑
v∈V+

b(v) if v = t
(1)

Since
∑

v∈V b(v) = 0, this shows that f ′ is an (s, t)-flow of value
∑

v∈V+
b(v).

To prove the converse direction it suffices to observe that if f ′ is a flow in N ′ which satisfies
1, then the flow f in N that we obtain by letting f(u, v) = f ′(u, v) for every arc (u, v) ∈ A
is a feasible flow in N . ⋄.

Clearly the cut S = {s}, T = V ∪ {t} is an (s, t)-cut in N ′ and its capacity is
∑

v∈V+
b(v).

Hence it follows from the result above that N = (V,A, c, b) has a feasible flow if and only
if the value of a maximum (s, t)-flow in N ′ is

∑
v∈V+

b(v). So we can solve the problem of
finding a feasible flow by constructing the new network N ′ and then running the Edmonds-
Karp algorithm to find a maximum flow f ∗ in N ′. If |f ∗| =

∑
v∈V+

b(v), then we obtain a
feasible flow in N just by deleting s, t and all arcs incident to these and otherwise there is
no feasible flow in N .

1.4 Orienting a graph to get a digraph with prescribed out-
degrees

Let G = (V,E) be an undirected graph. An orientation of G is any digraph D = (V,A)
that we can obtain by giving each edge uv ∈ E one of the two possible orientations u → v
or v → u (so A will contain the arc (u, v) in the first case and the arc (v, u) in the latter).
The out-degree, d+D(u), of a vertex u in a digraph D = (V,A) is the number of arcs going
out of u, that is, |{v|(u, v) ∈ A}|. It follows from this that

∑
u∈V d+D(u) = |A| since every

arc in A goes out of exactly one vertex.

Now let G = (V,E) be an undirected graph and let o : V → Z0 satisfy that
∑

u∈V o(u) =
|E|. We would like to know whether we can orient the edges of G in such a way that
we obtain a digraph D = (V,A) with d+D(u) = o(u) for all u ∈ V . We say that such an
orientation of G is good.

Let us see how to formulate this problem as a feasible flow problem in some network N .
First let D = (V,A′) be the digraph that we obtain from G = (V,E) by first enumerating
the vertices of V as v1, v2, . . . , vn, n = |V | and then orienting each edge vivj ∈ E with i < j
as the arc (vi, vj). We call D′ the reference orientation of G. Clearly every orientation
of G can be obtained by changing the orientation of 0 or more of the arcs of D′, so we are
looking for a way to find such a set if it exists. Let us give each arc (vi, vj) of A

′ a capacity
of one and then study integer flows (0 or 1 on every arc) in N ′ = (V,A′, c ≡ 1). Suppose

5

we will interpret f(vi, vj) = 1 is indicating that we should replace the arc (vi, vj) by the
arc (vj, vi). Then, using that we want the resulting out degree of each vertex vi to be o(vi)
we get that f must satisfy the following:

o(vi) = d+D′(vi)−
∑

(vi,vj)∈A′

f(vi, vj) +
∑

(vk,vi)∈A′

f(vk, vi) = d+D′(vi)− bf (vi) (2)

From this we see that there exists a good orientation of G with respect to o if and only
if there exists a feasible flow in the network N ′′ = (V,A′, c ≡ 1, b′′), where b′′(vi) =
d+D′(vi)−o(vi). Thus, using the results on how to find feasible flows, we obtain a polynomial
algorithm for checking whether a given graph G has a good orientation.

1.5 Finding the edge connectivity of a graph G using flows

Let G = (V,E) be a graph and recall that the edge-connectivity of G, denoted λ(G)
is the minimum number of edges of G whose removal will leave a disconnected graph.
So λ(G) > 0 precisely when G is connected. For any choice of distinct vertices x, y in
G = (V,E) we denote by λ(x, y) the minimum number of edges whose removal disconnects
x from y, that is, λ(x, y) is the minimum number of edges across some partition X, V \X
where x ∈ X, y ∈ V \ X. This implies that λ(G) = min{λ(x, y)|x, y ∈ V }. Since ev-
ery vertex v of G is either in V1 or in V2 for every choice of non-empty sets V1, V2 with
V1∩V2 = ∅ and V1∪V2 = V it follows that if we fix our favorite vertex x, then we will have
λ(G) = min{λ(x, v)|v ∈ V \ {x}}, so we can determine λ(G) by calculating the minimum
of the |V | − 1 values λ(x, v), v ̸= x.

Let G = (V,E) be given and construct a directed graph D =
↔
G= (V,A) by replacing every

edge uv ∈ E by a pair of anti-parallel arcs (u, v), (v, u). From D we can then construct
a network N = (V,A, c ≡ 1) by giving each arc capacity 1. Let us fix a vertex s ∈ V
and observe that if V1, V2 is a partition of V with s ∈ Vi and t is some vertex in V3−i,
then the capacity of the (s, t)-cut (S = Vi, T = V3−i) in N is the same as the number
of edges in G that go between V1 and V2. Thus the capacity of a minimum (s, t)-cut in
N is exactly λ(s, t). Thus it follows from the max-flow-min-cut theorem that we can find
λ(s, t) by finding a maximum (s, t)-flow f in N . Now the remark above implies that we can
determine λ(G) by |V | − 1 maxflow calculations where we keep the source vertex s fixed
and let the sink t run through all possible vertices of V \{s}. In Cormen they do not allow
anti-parallel arcs, but they show how one can easily modify the network (by subdividing
one arc of each such pair) without changing the problem.

6

