A New Constructive Method for the One-Letter
Context-Free Grammars

Stefan ANDREI and Wei-Ngan CHIN
Singapore-MIT Alliance E4-04-10, 4 Engineering Drive 3, Singapore 117576

Abstract— Constructive methods for obtaining the regular Il. PRELIMINARIES

grammar counterparts for some sub-classes of the context free . - . . .
grammars (cfg) have been investigated by many researchers. We suppose the reader is familiar with the basic notions of

An important class of grammars for which this is always the formal language theory, but some important notions are
possible is the one-lettercfg . We show in this paper a new briefly covered here.

constructive method for transforming arbitrary one-letter cfg A context-free grammar is denoted as G =

to an equivalent regular expression of star-height 0 or 1. Our (Vn,Vr,S,P), where Vy/Vr are the alphabets of

new r_esult is considerably simpler than a previous construction variables/terminals, { = Vy U Vi is the alphabet of
by Leiss, and we also propose a new normal form for a regular

expression with single-star occurrence. Through an alphabet @ll Symbols ofG), S'is the start symbol ané® C Viy x V" is
factorization theorem, we show how to go beyond the one-letter the set of productions. The productiods — a;, X — ag,

cfg in a straight-forward way. , X — ay will be denoted byX — «;|as]|...|ax and
Index Terms— reduction of a context-free grammar, one-letter the right-hand side ofX is denoted byrhs (X), that is
context-free language, regular expression {a1,@a,...,ar}. A variable X is a self- embedded variable

in G if there exists a derivationX ? aX 3, where «,

B € V*t ([6]). G is a self-embedded grammarif there
exists a self- embedded variablg. is a reduced _grammar
The subclass of one-letter alphabet languages has been sifu-X € V, S = a X g andV X € Vy, X :> u, With
ied for many years. The resulEach context-free one-letter,, ¢ V. The emgty word is denoted hy A cfg |s proper
language is regulamvas first proven in [13] and re-publishedi it has no e-productions (i.,e.X — ¢, X € Vy) and no
in [14] using Parikh mappings. A second method based @Rain-productions (i.eX — Y, X,Y € Vy). It is known
the “pumping” lemma for the context-free language8 ('s) that for everycfg (which doesn't generates there exists
was presented in [10]. Salomaa ([15]) used Hystems of an equivalent propecfq .
equations(based onu, - and * operators) to prove that the The set of the terminal words attached to the variakile
star-height of every one-letter alphabet language is equal t@f the grammarG is Lo(X) ={weV; |3 X -+ w}
or 1. Later, Leiss ([12]) gave the first constructive method by .~) G
developing a theory of language equations over a one-lettef,” (:G>) means thatn (at least one) productions have been
alphabet. Several key theorems were proven and tied togetapplied in GG). The set ofsentential forms of X in G is
to provide an algorithm which solves any equation of thdfg(X) = {a € V* | 3 X :> a}, the set ofsentential

type. In this paper, we shall present a new simpler meth@sims of G is S(G) = S (S). The|anguageof Gis L(G) =

using only a single result, called ttRegularization Theorem S(G)NV;: = La(S). All the above sets can be easily extended
with the help of a new normal form for one-letter equationsy, \yorgs, i.e. Le(a) ={a e V3|3 a == w}, as.o.
G

del;::tee g] g] | t[}SO]knngvnWltlrllalfusfeorséﬂe;?; ttr);re?uatlldnlss to A permutation with n elements is an one-to-one correspon-
g s x19 . depce from{1,...,n} to {1,...,n}, the set of all permutations

:rs]d:Cr'gab:Zr V;hetrgzrs.gi I?r?Ste]:]);?gl p05|nt 332 g:f.r?gp;ei ith n elements is denoted lﬂn N denotes the set of natural
gu xp 'on, In g (5D ' umbers,l,n denotes the sefl,...,n}, i, j € 1,n denotes

normal form for the one-letter equations and a new theorem fo
6 1,n,j€l,n.

solving them. AlgorithmA (Section 1lI) will use this normal We contlnue by providing some results related todpistem

form to determine precisely the least fixed point, as an eqwgf equations([1]). The systems of equations are extremely
alent regular expression. By considering the classesnaf- concise for modelingfl s ([7], [10]). The notions of substi-

le;ttefr/o,n efvarlar?le;] f.?hc torlzabtlavet_enla:(ge shghltly the CIaSStutlon solution, and equivalence can be found in [1], [11].
of cfg 's for which the construction of a regular expression” o o2 1: et ¢ — ({X1,.., X}, Vi, X1, P) be a

remains decidable. cfg . A system of (X;—)equationsover G is a vectorP =
Stefan ANDREI is with Singapore-MIT Alliance, National (P1---s Pn) Of S_ubsets ofV*, usually written as:X; =
University of Singapore, CS Programme, Singapore, 117543; e-mal;, V i € 1,n, with P, = {a € V* | X; — a € P}.

andrei@comp.nus.edu.sg The next classical result gives one method for computing
Wei-Ngan CHIN is with National University of Singapore, School of,

Computing, Department of Computer Science, Singapore, 117543; e- mtahe minimal solution of a system of equat'ons by derivations
chinwn@comp.nus.edu.sg.

I. INTRODUCTION

Theorem 2.1:Let G = ({X1,....X,},Vr, X1,P) be a ¢ + a(a + 8)*. Therefore Lg((af...c)*) = La(((en +

cfg . Then the vectorLg = (Lg(X1),..., La(Xy)) is the ... + a,)*)*) = Lg((ay + ... + a,)*) = Lg(ad...a) and

least solution of the associated system. Le((a103...00)*) = La(((a1(ag + ...+ an)*)*) = La(e+
The next theorem refers to a well known transformation; (a1 + ... + ay,)*) = € + Lg(arajas...al). »

which “eliminates” X from a linear X —equation ([3], [15], Definition 3.1: We say that the equatioX = P is in

[11]). From now on, unless specified otherwise, we will usthe one-letter normal form (abbreviated byOLNF) if P =

notationsae = ay + ... + m, B = B1+ ... + Bn, Wwherem, and o X + 3, whereX ¢ §.

n € N. We shall useX ¢ g to meanX ¢ 3;,V j € 1,n. Theorem 3.1:.Let G = ({Xy,...,Xn}, {a}, X1, P) be an
Theorem 2.2:Let X = o X + 8 be anX —equation, where one-letter reducedfg . Then every attached’;-equation can

X ¢ a, and X ¢ (. The least solution isY = o*f, and if be transformed into OLNF.

€ ¢ a, then this is unique. Proof Let X; = aX; + @ be an arbitraryX;-equation.

Because is reduced, it follows thaB # 0, otherwise there

I1l. ONE-LETTER CFGAND ITS REGULAR CONSTRUCTION Will be no terminal word inLs(X;). Based on Lemma 3.2,

In this section, we shall give a new constructive method fé follows that the symbols ofv can be commuted iP; in
regularizing one-lettecfg s that is more concise and generapuch @ way thatX; will be on the last position. Next, by
than the method proposed by Leiss ([12]). The commutativifjStributivity (1 Xi+72-X; = (y1+72)-Xi), itis obvious that
plays an important role for transforming the one-lettg 's €Very X;—equation can be transformed in this form. The only
and this is covered in the following lemma. possible term ofP; for which X; cannot be commuted until

Lemma 3.1:Let G = (Vy, {a}, S, P) be a one-lettecfy . the last position igY' (5’ X;)*. In that caseq/ (3’ X;)* will be

The set of allcommutative grammars of G is Geom (G) = eWritten intoa’(e+ (5" X;)* (4’ Xi)) = o' +a' f/(5" X;)* X;.
{(Viv, {a}, S, Poom), Where Py = {X — app) .oy | NOW if Xi ¢ o then theX;-equation is in OLNF, otherwise

X — aj..ay € P, © € II}. Then for everyG.,,, ¢ the transformation will continue and stop after a finite number
Geom(G), it follows L(G) = L(Geom). of stepsa

Proof It can be easily proved by induction @nl > 1, that By doing this transformation together with the (fIat'tenilng)
for any X € Vy, we have:(1) X :é> o iff X =L o Lemma 3.3, Theorem 3.2 can be viewed as a generalization of

] Geom Leiss’s results (consisting of Theorems 3.1, 4.1, and 4.2 from
Complete proof can be found in [A. [12]).

Lemma 3.2 allows the symbols of any sentential form to be The next theorem is a tool for eliminating the occurrences
re-ordered in an one-lettefg . Its proof is similar to Lemma of the variable X in a rhs of an X—equation. This is
3.1. a generalization of Theorem 2.2, and a key ingredient of

Lemma 3.2:Let G = (V, {a}, S, P) be an one-lettecfg ~ Algorithm A. Let us denote byx[3/X] the word obtained

and let us consider the derivatien ... v, = a™. For any by replacing everyX —occurrence inv with 3. Of course, the
¢ substitution is valid iff X does not occur irp.

m € TIy,, we havear() ... an(i) =5> a™. _ Theorem 3.2:(Regularization) LeG' = (Vi, {a}, S, P) be
The next lemma shows how star-operations are flattenedgf one-letter reducedfg , X € Vy and X = a X + 3
the one-lettecfg 's. be an OLNF X —equation. Then, the least solution of the

Lemma 3.3:Let G = (Viv, {a}, 5, P) be an one-lettecfy y_equation isX = (a[3/X])*8, and if G is proper, then
anday, ..., o, SOMe words oveVy U{a}. Then the following this solution is unique.
properties hold:Lg((a1 + ... + an)*) = Lg(aj..y,) = Proof Before starting the proof, let us refer to the uniqueness
La((af...ap)), La((anas...a)") = e+ La(aiaias...an). of the solution. Becausé is proper, it follows thatG has no
Proof Focusing tg the first equality, we have to prove that.productions and chain-productions, 80¢ a, ande ¢ 3.
(@1 + o +ap)” == a™ iff af..a; == a™. Based on similarly to Theorem 2.2, it easily follows that the solution
Lemma 3.2, the wordsy, ..., a,, can be commuted in any of the X—equation is unique. Without loss of generality,
order. We proceed by induction am First, let us suppose by applying finitely many times Lemmas 3.2 and 3.3, we
thatn = 2. The inclusionL¢((aq + a2)*) 2 Lg(ajad) is suppose thatv can be viewed as a regular expression over
obvious. For the other inclusion, let us take= (o + a2)™, Vi U {a} of star-height0 or 1. So, its general form isy

n > 0. It can be rewritten3 = a* 22 ... o™ 1 a*, where ¢ .) Lo
= n@k 1 %2 1 2 = Y ag (o i XF)* L (am X Fmi)*. For simplicity, let us

L B _ B]
ni €0,n, Vi €1,k and Z; = Using aras = azan gy on(a; ;X*14)*. Based on commutativityo; ;X *1i)*
applied several times, we gét= o' T "t gnetetne g0 = {(ap XM | gy > 0} = {ag i XPem | ng >
L(ﬁ) c LG(O[{< a§)7 thereforeLG((al + a2)*) = LG(O‘TO‘;)' 0. Hence.a« = Zf: (oL kL i N K i o,
_ P } = aoﬂ(al,i)"'(am,,i)
Now, we suppose true fon = m > 2 and prove it for =
n = m+ 1. We have Lg((a e «) = ¢ N1 ;
+ G((1+ + oy + m-H)) _ Zao.’iaT’liv’f“.a:i::ylXkl,z'n1,1+~~~+km,7.'nm,1. This will be

La(((oat.tam)+am1)) = La((oa+..4am)*ag,) = i=1
Le((oa+..4am)*)-La(ag, 1) = La(ai...ap,)- La(ag, 1)
= La(of...ala,). =

For the other identities, we shall use some equations foK}) U {a} and @; are (linear) polynomials in variables
regular expressions from [15]a*)* = o* and (a5*)* = n;; € N, (k;; € N are constants).

t
denoted bya = > /X9, wherea! are words ove(Vy —

Therefore, the initial X —equation becomesX = expression ove{a} of star-height0 or 1, thus Ls(X;) is
t . . . - .
Qi) X . which corresponds to the followin regular,V i < 1,n. By induction oni, it can be e_asny proved
(,; % X+ 58 P gthat according to Lemma 3.3; has the star-heightt or 1. =
X —productions inG: X — of X@X | ... | o, X@X |
Bi | ... | Bn. BecauseX ¢ o}, Vi € 1,t, and X ¢ (3;,
VY j € 1,n, it follows that S¢(X) can be generated by

applying several times (e.g—times) productions of the form) . i
X — ol XQiX, i€ 1,t, followed by productions of the form Example 3.1:Let us considel; = ({X1, X5}, {a}, X1, P)

X — B4, j € I,n in order to remove all the occurrences opvith P given by the following productionsX; — a X; X |

X. According to Lemma 3.2, we can re-order the symbols {fi X2 — X1 X; | aa. Line 1 of Algorithm A will construct

any sentential form, and thus apply the curréhproduction the system.-X; = a Xy X +a, X - X1 Xz + o, After

to the last occurrence of the variabl¥, so we get the executing line 4, we gefil - (aé@) a, and after line 6,

general X —derivations: X =% af ../ X@u. X@.x, W& obINX; =a(aXy)" X;+ a” Al the next iteration,
o G T Algorithm A will provide X» = (a (a®)*)*a?, and after line

whereiy, ..., i, € 1,t. After applying @i, + ... + Qi, +1 5 X, = a2 +a®-a*(a3)*. At line 9, it follows X; = a(a® +

productions of typeX — f;, j € 1,n, we obtain the 44.*(43)*)* and after line 10X; = (a®)* - (a +a® - a* -

words agl...agsﬁjlyl..ﬂjmi’l B Bieq, Bi- According g3y . (g4)*). m

to Lemma 3.2 L¢(a, .o Bji y-Bjrg, , -Bjen-Bieo, . Bi) = Asaremark, in AlgorithmA the order of eliminating(; can

L (i, B0 --Bjra, @i Bjen-Biag, ,B5)- Because the pe arbitrary. For instance, by eliminatid, followed by X,

words o, 3j, 1B o, , ~~~aisﬂjs,1~“/6js,cgi’sﬁj correspond we get the equivalent simpler expressiods: = a + a* - a*

to (a[8/X])*B, then it follows that the solution of the and X, = a? - a*. We shall next show that every factor of

X —equation isX = (a[8/X])*(. = the one-letter regular expression can be reduced to only one

Algorithm A is based on the representation of the one-lett@Pcurrence of.
cfg as a system of equations. Then this system of equationd€finition 3.2: We say thate = ¢, + ... + ¢, (where each
is solved in order to obtain an equivalent regular expressidh. cOntains only- and « operators) is irsingle-star normal
As we assume reducetlg , each recursiveX —equation must orm iff Vi € 1,n, e; has at most one occurrence of

As a remark, due to the nestémt instructions (2-6 and 7-
10), if we suppose that the steps 3-6 and 9-10 require constant
time in n, then the time-complexity of Algorithm is O(n?).

have at least one term without any occurrenceXof This normalization is captured in the following theorem.
. Theorem 3.4:Every regular expression over an one-letter
Algorithm A alphabet can be transformed into an equivalent single-star
Input: G = ({X1, ..., X}, {a}, X1, P) a reduced and propernormal form.
one-lettercfg Proof If e is a regular expression of the star-heighfthe
Output: Lg = (Lg(X1), ..., La(Xn)), and La(X;) is regu- casel is trivial) then it can be written as= e, +...+¢,,, where
lar, VieT,n Vieln, e =ami(am). (a)", wheremy; < ... <
Method: mg, ;. We suppose, without loss of generality, that the cases
1. ConstructX; = P;, Vi € 1,n as in Definition 2.1; msi = ms11, are excluded based on the propestyo™ =
2. fori:=1to n do begin o*. Let G(ay,...,a;) be the greatest numbérsuch that the
3. TransformX; —equation into OLNF Diophantine equatiom; x1 + ... + a; zx = b has no solution
4. P; = (a[B/Xi])*B; in N, where the greatest common divisor @f, ..., a; is 1
5. Apply Lemma 3.3 to obtain the star-heightor 1 for (notation ged(as, ..., a) = 1). This means that for any >
P; G(aq,...,ar) the equatioru; z1 + ... + ag z = b has always
6. for j:=i+1to ndo P; = P;[Pi/Xil; solution inN. Let us denote byF'(aq, ..., a;) the set of all
endfor natural numbers less tha@(aq,...,ax) such that the above
7. fori:=n—1downto1 do equation has solution ilN. According to [8], ifa; < ... < ak
8. for j :=n downto i + 1 do begin andged(ai, ..., ax) = 1, thenG(ai, ..., ax) < (ar—1)(a1—1).
9. P; = Pi[P;/ X;]; Denoting d = ged(mag,...,my, ;), due to
10. Apply Lemma 3.3 to obtain the star-heightor 1 the above Diophantine equation, it follows that
for P; e; can be equivalently transformed intoa™o
endfor (e Fad™ 4 4 adne 4 (@) (TR DR DL (ad)*) :

11. Lg=(X1,..,Xy) whereny, ..., n, € F(™5*, ..., ™). In this way, each factor

Theorem 3.3:Algorithm A is correct and performs a finitee; of e has at most one star, sois in single-star normal
number of steps. form. =

Proof The lines 1, 11 are due to Definition 2.1 and Theorem A particular case of the above theorem is to reduce the
2.1, respectively. The instructions between lines 3-5 are basegbression(a™)* - (a™)* for which m = 0(modn). So,

on Theorem 3.2 and Lemma 3.3 and imply that € 1,n, ged(m,n) = m, hence by Theorem 3.4, it follows that
P; doesn't containX;. Line 6 ensures that < € 1,n, P; (a™)*-(a")* = e+ (a™) - (a™)* = (a™)*. Considering the
doesn't contain anyX; with j < i. The occurrences of; cfg from Example 3.1, we can reducé = a-(a®)*+a®-a*
from P;, wherej > i are replaced with terminal words at theand X, = a? + a® - a*.

lines 7-10. After the execution of Algorithi, P; is aregular ~ Example 3.2:For instance, the following regular expres-

sions of star-height are reduced to the single-star normaévery self-embedded variablg; the rhs (X;) C {X;, A;}*,
form: (a?)*(a®)* = € + a%a*, (a*)*(a%)* = € + a*(a?)* and it follows that Lg/(X;) € {4;}*. Hence Lg/(X;) is an
(a")*(a%)*(a®)* = e+ a* + a8 +a® 4+ a® +a'® +a'? - a*.m one-letter language, so based on Algorithmit results that
Our main result, based on Theorem 3.2, is considerably, (X;) is a regular language. By applying Theorem 4.1, it
simpler and more general than the constructive method givietiows that L(G’) is regular.
by Leiss [12]. Firstly, we needed only a single (more general) Now, let us consider the substitutien: VZ UV — V7,
theorem to facilitate the construction of an equivalent regulauch thato(A;) = {rhs (A4;)}, Vi € 1,n ando(a) = a, ¥V
expression for an arbitrary one-lettefg . Secondly, the a € Vr. Becausgrhs (A;)} is a finite set of words, it follows
substitution of all theX —occurrences bys is done in one thato is a regular substitution. Obviously,(G) = o(L(G"))
step, as opposed to multiple steps used by Leiss’s procedamed according to closure of the regular languages under the
We now explore a straight-forward way to go beyond oneegular substitutions, it results tha&{G) is regular.s

letter cfg s through the use of alphabet factorisation. Example 4.1:Let G = ({S, A4, B},{a,b,c},S,P) be a
cfg with the following set of production®: S — AB S | ¢,
IV. BEYOND ONE-LETTER CFG's A — aAaaAa | a, B — bBB | bbb. The set of

i . . the self-embedded variables {si, B}, and Lg(A) € {a}",
As is well-known, the non self-embedded varialdés/'s Le(B) C {b}*, so G is one-letter factorizable. Based on

are easily converted to the regular sublanguages. Theoremﬁkﬂorithm A, we getLg(A) = {(@®)™a | ny > 0} and
(proven in [2]) shows that angfg , G, generates a regularLG B) = {(H)"2 b3 | ny > 0}. Now, Lg(S) zi(Lc(A))
language if all its self-embedded variables can be shown B(B))*-c = {((a®)™ a (b)"2 b3)" ¢ | ny, ng, ng > 0}, SO
generate regular languages. L(G) = Lg(S) is regular.s -
Theorem 4.1:Let G be an arbitrary reduced and proper Example 4.2:Let G = ({S,A},{(,)},S,P) be acfy
cfg . If for all self-embedded variablest the language yjth productionsP given by S — S S | ASA | ¢, and
La(X) is regular, thenl(G) is regular. A — (|). Obviously, by Definition 4.2(7 is one-variable

In the following, we shall combine the property of an oneciorizable. Similarly to the proof of Theorem 4.2, we get the
letter alphabet, together with self-embeddedness, in Ordere‘t?uations = (S + A2)S + . Now based on Algorithr\, it

obtain a more powerful class ofg 's which generates regular ggits thats — (A%)*, so according to thel—productions

languages. we get the regular languade(G) = 21% g
Definition 4.1: A ¢fg G = (Vi, Vi, S, P) is calledone- 9 9 guage(G) = {{(,) }°}

letter factorizable iff for every self-embedded variablé(,
Le(X) C {a}*, wherea € Vp. V. CONCLUDING REMARKS

In other words, ifG is one-letter factorizable, then every We summarize and compare some previous work on one-
self-embedded variable has the corresponding language létter alphabet language. The class of one-letter alphabet lan-
fined over (only) one-letter alphabet. guages were used by considering pushdown automata, whose

Now, the notion of one-variable factorizable will be intromemory consists of one-letter language. Boasson ([4]) called
duced. This notion is somehosiualto one-letter factorizable, this kind of pushdown automateountersand the accepted
by considering at most one occurrence of a variatlein languageone-countetanguage. He proved that the family of
rhs (X;). one-counter languages is a proper subfamilgfbf 's.

Definition 4.2: We say thatG = (V3 U VE, Vr, X1, P) The class of one-letter alphabet languages can be handled
where Vi = {X;,..,X,,} andVZ = {4,,..,A4,} (Vi n by considering finite-state automata. In [8], the problem of
V2 = () is one-variable factorizable iff for every self- converting the (one-way) nondeterministic and two-way deter-
embedded variableX; the rhs (X;) C {X;,A;}* and ministic finite-state automata is hard to simulate by (one-way)
rhs (4;) C V. deterministic finite-state automata, even for only one-letter

Theorem 4.2:(Factorization) The following facts hold: alphabet languages. He proved tt@teV™'°e") states are

(a) An one-letter factorizableefg generates a regularsufficient to simulate am—state (one-way) nondeterministic

language. finite automaton recognizing a one-letter language by a (one-
(b) An one-variable factorizablefg generates a regularway) deterministic finite automaton.
language. The class of one-letter alphabet languages was covered in

Proof (a) LetG = (Vw,Vr, S, P) be a one-letter factor- [9], where an efficient conversion from a finite-state automaton
izable cfg . For every self-embedded variable € Vi, we over one-letter alphabet to a context-free grammar in Chomsky
know thatLs(X) C {a}*. So due to Theorem 3.3, it follows normal form was proposed. The authors of [9] showed that
that L (X) is regular. Applying Theorem 4.1, it follows thatany n—states one-letter deterministic finite automata can be
L(G) is regular. simulated by a Chomsky normal form grammar wn?/?)

(b) LetG = (VL UVZE, Vr, X1, P) be a one-variable factor- variables, respectively the non-deterministic automata requires
izable cfg , where Vi = {X1,..., X,,}, V& = {41, ..., A,} O(n'/3) variables. In our paper, Algorithmd takes in its
(Vi N V2 = 0) and for every self-embedded variablg the input an one-letter reduced and promég and provide the
rhs (X;) C {X;, A;}* andrhs (4;) C V. equivalent regular expression in single-star normal form.

Let us construct thefg G’ = (Vi,VE U Vp, Xy, P'), The one-letter languages have been used recently in [16]
where P/ = P — {A, — w | A; € V2}. Because for for the decomposition of finite languages.

Our work has advanced the frontier of research in one-lettdniversity of Singapore, and a Fellow in the Computer Science
cfg 's by providing a much simpler constructive method foProgramme of the Singapore-MIT Alliance. He has received
transforming into regular expressions using one-letter normtas B.Sc. and M.Sc. in Computer Science, in 1982 and
form. We also introduced a factorization result that enabld®83, respectively, from University of Manchester, United
us to go beyond one-letter languages in a straight-forwafihgdom, and PhD in Computing, in 1990 from the Impe-
way. This helps to enlarge the class aff 's that could be rial College of Science, Technology and Medicine, United
regularized. Kingdom. His current research interests are functional pro-

We thank to the unknown referees for their very usefgramming, program transformation, parallel systems, software
remarks, suggestions and comments which improved the papeodels and methods. More details about him can be found at

http://www.comp.nus.edu.sg/ chinwn/
REFERENCES

[1] Auteberg, J., Berstel, J., Boasson, L.: Context-Free Languages and
Pushdown Automatddandbook of Formal Languages. Word, Language,
Grammar Vol. 1, Eds. G.Rozenberg, A. Salomaa. Springer Verlag,
Berlin (1997) 111-174

[2] Andrei, St., Cavadini, S, Chin, W.-N.: Transform-
ing self-embedded context-free grammars into regular
expressions. Faculty of Computer Science TR02-06,
http://www.infoiasi.ro/ tr/tr.pl.cgi , lasi University,
Roménia (2002) 1-25

[3] Arden, D.N.: Delayed logic and finite state machin€seory of comput-
ing machine designUniv. of Michigan Press, Ann Arbor (1960) 1-35

[4] Boasson, L.: Two iteration theorems for some families of languages.
Comput. System Sci(6), (1973) 583-596

[5] Bar-Hillel, Y., Perles, M., Shamir, E.: On formal properties of simple
phrase structure grammat. Phonetik. Sprachwiss. Kommunikations-
forsch.14 (1961) 143-172

[6] Chomsky, N.: On certain formal properties of grammdrgormation
and Control.vol. 2 (1959) 137-167

[7] Chomsky, N., Sctitzenberger, M.P.: The algebraic theory of context-free
languagesComputer Programming and Formal Syste(i#s Braffort and
D. Hirschberg, eds.) Amsterdam, North-Holland (1963) 118-161

[8] Chrobak, M.: Finite automata and unary languagdseoretical Com-
puter Science47 (1986) 149-158

[9] Domaratzki, M., Pighizzini, G., Shallit, J.: Simulating finite automata
with context-free grammardnformation Processing Letter84 (2002)
339-344

[10] Ginsburg, S., Rice, H. G.: Two families of languages related to ALGOL.
Journal of the Association for Computing Machinevgl. 9 (1962) 350-
371

[11] Kuich, W., Urbanek, F.J.: Infinite linear systems and one counter
languagesTheoretical Computer Scienc22 (1983) 95-126

[12] Leiss, E.L.: Language equations over a one-letter alphabet with union,
concatenation and star: a complete solutidmeoretical Computer
Sciencel31 (1994) 311-330

[13] Parikh, R. J.: Language-generating devid@saterly Progress Repart
No. 60, Research Laboratory of Electronics, M.I.T. (1961) 199-212

[14] Parikh, R. J.: On context-free languagésurnal of the Association for
Computing MachineryVol. 13, (1966) 570-581

[15] Salomaa, A.Theory of AutomataPergamon Press. Oxford (1969)

[16] Salomaa, A., Yu, S.: On the Decomposition of Finite Languages.
Developments in Language Theory: Foundations, Applications, and
PerspectivesEds. G. Rozenberg, W. Thomas. World Scientific. Scientific
(2000)

Stefan Andreiis a Research Fellow in the National Univer-
sity of Singapore under the Singapore-MIT Alliance (SMA).
He has received his B.Sc. and M.Sc. in Computer Science, in
1994 and 1995, respectively, from lasi University, Rona
and PhD in Computer Science in 2000 from the Hamburg
University, Germany. Between 1997 and 2000, he got the fol-
lowing academic awards: DAAD scholarship, TEMPUSEP
11168-96 scholarship and World Bank Joint Japan Graduate
Scholarship at Fachbereich Informatik, Hamburg Universitaet,
Germany. He is currently working on formal languages, com-
pilers and real-time systems. More details about him can be
found athttp://www.infoiasi.ro/"stefan

Wei Ngan Chin is an Associate Professor at the Depart-
ment of Computer Science, School of Computing, National

