
Chapter 1
Introduction

In this introductory chapter we start with a preliminary part and present then two
classical exact algorithms breaking the triviality barrier. The first one, from the nine-
teen sixties, is the dynamic programming algorithm of Bellman, Held and Karp to
solve the TRAVELLING SALESMAN problem [16, 17, 111]. The second is a branch-
ing algorithm to compute a maximum independent set of a graph. The main idea of
this algorithm can be traced back to the work of Miller and Muller [155] and Moon
and Moser [161] from the nineteen sixties.

The history of research on exact algorithms for these two NP-hard problems is
contrasting. Starting with the algorithm of Tarjan and Trojanowski [213] from 1977
there was a chain of dramatic improvements in terms of the running time of an
algorithm for the MAXIMUM INDEPENDENT SET problem. For the TRAVELLING
SALESMAN problem, despite many attempts, no improvement on the running time
of the Bellman-Held-Karp’s algorithm was achieved so far.

1.1 Preliminaries

O∗ notation. The classical big-O notation is defined as follows. For functions f (n)
and g(n) we write f = O(g) if there are positive numbers n0 and c such that for
every n > n0, f (n) < c · g(n). In this book we use a modified big-O notation that
suppresses all polynomially bounded factors. For functions f and g we write f (n) =
O∗(g(n)) if f (n) = O(g(n)poly(n)), where poly(n) is a polynomial. For example,
for f (n) = 2nn2 and g(n) = 2n, f (n) =O∗(g(n)). This modification of the classical
big-O notation can be justified by the exponential growth of f (n). For instance, the
running time (

√
2)n poly(n) is sandwiched between running times 1.4142135n and

1.4142136n for every polynomial poly(n) and sufficiently large n. In many chapters
of this book when estimating the running time of algorithms, we have exponential
functions where the base of the exponent is some real number. Very often we round
the base of the exponent up to the fourth digit after the decimal point. For example,
for running time O((

√
2)n), we have

√
2 = 1.414213562..., and (

√
2)n poly(n) =

F.V. Fomin, D. Kratsch, Exact Exponential Algorithms, Texts in Theoretical 1
Computer Science. An EATCS Series, DOI 10.1007/978-3-642-16533-7 1,
c© Springer-Verlag Berlin Heidelberg 2010

2 1 Introduction

O(1.4143n). Hence when we round reals in the base of the exponent, we use the
classical big-O notation. We also write f = Ω(g), which means that g =O(f), and
f = Θ(g), which means that f = Ω(g) and f =O(g).

Measuring quality of exact algorithms. The common agreement in polynomial
time algorithms is that the running time of an algorithm is estimated by a function
either of the input length or of the input “size”. The input length can be defined as
the number of bits in any “reasonable” encoding of the input over a finite alphabet;
but the notion of input size is problem dependent. Usually every time we speak
about the input size, we have to specify what we mean by that. Let us emphasize
that for most natural problems the length of the input is not exactly the same as what
we mean by its “size”. For example, for a graph G on n vertices and m edges, we
usually think of the size of G as Θ(n+m), while the length (or the number of bits)
in any reasonable encoding over a finite alphabet is Θ(n + m logn). Similarly for a
CNF Boolean formula F with n variables and m clauses, the size of F is Θ(n + m)
and the input length is Θ(n+m logm).

So what is the appropriate input “size” for exponential time algorithms? For ex-
ample for an optimization problem on graphs, the input “size” can be the number
of vertices, the number of edges or the input length. In most parts of this book we
follow the more or less established tradition that

• Optimization problems on graphs are analyzed in terms of the number of vertices;
• Problems on sets are analyzed in terms of the number of elements;
• Problems on Boolean formulas are analyzed in terms of the number of variables.

An argument for such choices of the “size” is that with such parameterization it
is often possible to measure the improvement over the trivial brute-force search
algorithm. Every search version of the problem L in NP can be formulated in the
following form:

Given x, find y so that |y| ≤ m(x) and R(x,y) (if such y exists).

Here x is an instance of L, |y| is the length (the number of bits in the binary represen-
tation) of certificate y, R(x,y) is a polynomial time decidable relation that verifies
the certificate y for instance x, and m(x) is a polynomial time computable and poly-
nomially bounded complexity parameter that bounds the length of the certificate y.
Thus problem L can be solved by enumerating all possible certificates y of length
at most m(x) and checking for each certificate in polynomial time if R(x,y). There-
fore, the running time of the brute-force search algorithm is up to a polynomial
multiplicative factor proportional to the number of all possible certificates of length
at most m(x), which is O∗(2m(x)).

Let us give some examples.

• Subset problems. In a subset problem every feasible solution can be specified as
a subset of an underlying ground set. If the cardinality of the ground set is n, then
every subset S of the ground set can be encoded by a binary string of length n. The
ith element of the string is 1 if and only if the ith element of the instance x is in S.
In this case m(x) = n and the brute-force search can be done in time O∗(2n). For

1.1 Preliminaries 3

instance, a truth assignment in the SATISFIABILITY problem corresponds to se-
lecting a subset of TRUE variables. A candidate solution in this case is the subset
of variables, and the size of each subset does not exceed the number of variables,
hence the length of the certificate does not exceed n. Thus the brute-force search
enumerating all possible subsets of variables and checking (in polynomial time)
whether the selected assignment satisfies the formula takes O∗(2n) steps. In the
MAXIMUM INDEPENDENT SET problem, every subset of the vertex set is a so-
lution candidate of size at most n, where n is the number of vertices of the graph.
Again, the brute-force search for MAXIMUM INDEPENDENT SET takes O∗(2n)
steps.

• Permutation problems. In a permutation problem every feasible solution can be
specified as a total ordering of an underlying ground set. For instance, in the
TRAVELLING SALESMAN problem, every tour corresponds to a permutation of
the cities. For an instance of the problem with n cities, possible candidate solu-
tions are ordered sets of n cities. The size of the candidate solution is n and the
number of different ordered sets of size n is n!. In this case m(x) = log2 n! and
the trivial algorithm runs in time O∗(n!).

• Partition problems. In a partition problem, every feasible solution can be speci-
fied as a partition of an underlying ground set. An example of such a problem is
the GRAPH COLORING problem, where the goal is to partition the vertex set of an
n-vertex graph into color classes. In this case m(x) = log2 nn and the brute-force
algorithm runs in O∗(nn) =O∗(2n logn) time.

Intuitively, such a classification of the problems according to the number of can-
didate solutions creates a complexity hierarchy of problems, where subset problems
are “easier” than permutation problems, and permutation problems are “easier” than
partition problems. However, we do not have any evidences that such a hierarchy
exists; moreover there are permutation problems solvable in time O∗((2− ε)n) for
some ε > 0. There are also some subset problems for which we do not know any-
thing better than brute-force search. We also should say that sometimes such clas-
sification is ambiguous. For example, is the HAMILTONIAN CYCLE problem a per-
mutation problem for vertices or a subset problem for edges? One can argue that
on graphs, where the number of edges m is less than log2 n!, the algorithm trying
all possible edge subsets in time O∗(2m) is faster than O∗(n!), and in these cases
we have to specify what we mean by the brute-force algorithm. Fortunately, such
ambiguities do not occur often.

Parameterized complexity. The area of exact exponential algorithms is not the
only one dealing with exact solutions of hard problems. The parameterized com-
plexity theory introduced by Downey and Fellows [66] is a general framework for a
refined analysis of hard algorithmic problems. Parameterized complexity measures
complexity not only in terms of input length but also in terms of a parameter which
is a numerical value not necessarily dependent on the input length. Many parameter-
ized algorithmic techniques evolved accompanied by a powerful complexity theory.
We refer to recent monographs of Flum and Grohe [78] and Niedermeier [164] for
overviews of parameterized complexity. Roughly speaking, parameterized complex-

4 1 Introduction

ity seeks the possibility of obtaining algorithms whose running time can be bounded
by a polynomial function of the input length and, usually, an exponential function
of the parameter. Thus most of the exact exponential algorithms studied in this book
can be treated as parameterized algorithms, where the parameter can be the number
of vertices in a graph, the number of variables in a formula, etc. However, such a pa-
rameterization does not make much sense from the point of view of parameterized
complexity, where the fundamental assumption is that the parameter is independent
of the input size. In particular, it is unclear whether the powerful tools from pa-
rameterized complexity can be used in this case. On the other hand, there are many
similarities between the two areas, in particular some of the basic techniques like
branching, dynamic programming, iterative compression and inclusion-exclusion
are used in both areas. There are also very nice connections between subexponen-
tial complexity and parameterized complexity.

1.2 Dynamic Programming for TSP

Travelling Salesman Problem. In the TRAVELLING SALESMAN problem (TSP),
we are given a set of distinct cities {c1,c2, . . . ,cn} and for each pair ci 6= c j the
distance between ci and c j, denoted by d(ci,c j). The task is to construct a tour
of the travelling salesman of minimum total length which visits all the cities and
returns to the starting point. In other words, the task is to find a permutation π of
{1,2, . . . ,n}, such that the following sum is minimized

n−1

∑
i=1

d(cπ(i),cπ(i+1))+d(cπ(n),cπ(1)).

How to find a tour of minimum length? The easy way is to generate all possible
solutions. This requires us to verify all permutations of the cities and the number of
all permutations is n!. Thus a naive approach here requires at least n! steps. Using
dynamic programming one obtains a much faster algorithm.

The dynamic programming algorithm for TSP computes for every pair (S,ci),
where S is a nonempty subset of {c2,c3, . . . ,cn} and ci ∈ S, the value OPT [S,ci]
which is the minimum length of a tour which starts in c1, visits all cities from S and
ends in ci. We compute the values OPT [S,ci] in order of increasing cardinality of S.
The computation of OPT [S,ci] in the case S contains only one city is trivial, because
in this case, OPT [S,ci] = d(c1,ci). For the case |S|> 1, the value of OPT [S,ci] can
be expressed in terms of subsets of S:

OPT [S,ci] = min{OPT [S\{ci},c j]+d(c j,ci) : c j ∈ S\{ci}}. (1.1)

Indeed, if in some optimal tour in S terminating in ci, the city c j immediately pre-
cedes ci, then

1.2 Dynamic Programming for TSP 5

OPT [S,ci] = OPT [S\{ci},c j]+d(c j,ci).

Thus taking the minimum over all cities that can precede ci, we obtain (1.1). Finally,
the value OPT of the optimal solution is the minimum of

OPT [{c2,c3, . . . ,cn},ci]+d(ci,c1),

where the minimum is taken over all indices i ∈ {2,3, . . . ,n}.
Such a recurrence can be transformed in a dynamic programming algorithm by

solving subproblems in increasing sizes, which here is the number of cities in S. The
corresponding algorithm tsp is given in Fig. 1.1.

Algorithm tsp({c1,c2, . . .cn},d).
Input: Set of cities {c1,c2, . . . ,cn} and for each pair of cities ci,c j the distance d(ci,c j).
Output: The minimum length of a tour.

for i = 2 to n do
OPT [ci,ci] = d(c1,ci)

for j = 2 to n−1 do
forall S ⊆ {2,3, . . . ,n} with |S|= j do

OPT [S,ci] = min{OPT [S\{ci},ck]+d(ck,ci) : ck ∈ S\{ci}}

return min{OPT [{c2,c3, . . . ,cn},ci]+d(ci,c1) : i ∈ {2,3, . . . ,n}}

Fig. 1.1 Algorithm tsp for the TRAVELLING SALESMAN problem

Before analyzing the running time of the dynamic programming algorithm let us
give a word of caution. Very often in the literature the running time of algorithms is
expressed in terms of basic computer primitives like arithmetic (add, subtract, mul-
tiply, comparing, floor, etc.), data movement (load, store, copy, etc.), and control
(branching, subroutine call, etc.) operations. For example, in the unit-cost random-
access machine (RAM) model of computation, each of such steps takes constant
time. The unit-cost RAM model is the most common model appearing in the liter-
ature on algorithms. In this book we also adapt the unit-cost RAM model and treat
these primitive operations as single computer steps. However in some parts of the
book dealing with computations with huge numbers such simplifying assumptions
would be too inaccurate.

The reason is that in all known realistic computational models arithmetic op-
erations with two b-bit numbers require time Ω(b), which brings us to the log-
cost RAM model. For even more realistic models one has to assume that two b-bit
integers can be added, subtracted, and compared in O(b) time, and multiplied in
O(b logb log logb) time. But this level of precision is not required for most of the
results discussed in this book. Because of the O∗-notation, we can neglect the dif-
ference between log-cost and unit-cost RAM for most of the algorithms presented
in this book. Therefore, normally we do not mention the model used to analyze
running times of algorithms (assuming unit-cost RAM model), and specify it only
when the difference between computational models becomes important.

6 1 Introduction

Let us come back to TSP. The amount of steps required to compute (1.1) for a
fixed set S of size k and all vertices ci ∈ S is O(k2). The algorithm computes (1.1)
for every subset S of cities, and thus takes time ∑

n−1
k=1O(

(n
k

)
). Therefore, the total

time to compute OPT is

n−1

∑
k=1

O(
(

n
k

)
k2) =O(n22n).

The improvement fromO(n!n) in the trivial enumeration algorithm toO∗(2n) in the
dynamic programming algorithm is quite significant.

For the analyses of the TSP algorithm it is also important to specify which model
is used. Let W be the maximum distance between the cities. The running time of
the algorithm for the unit-cost RAM model is O∗(2n). However, during the algo-
rithm we have to operate with O(lognW)-bit numbers. By making use of more
accurate log-cost RAM model, we estimate the running time of the algorithm as
2n logWnO(1). Since W can be arbitrarily large, 2n logWnO(1) is not in O∗(2n).

Finally, once all values OPT [S,ci] have been computed, we can also construct an
optimal tour (or a permutation π) by making use of the following observation: A
permutation π , with π(c1) = c1, is optimal if and only if

OPT = OPT [{cπ(2),cπ(3), . . . ,cπ(n)},cπ(n)]+d(cπ(n),c1),

and for k ∈ {2,3, . . . ,n−1},

OPT [{cπ(2), . . . ,cπ(k+1)},cπ(k+1)] = OPT [{cπ(2), . . . ,cπ(k)},cπ(k)]
+d(cπ(k),cπ(k+1)).

A dynamic programming algorithm computing the optimal value of the solution
of a problem can typically also produce an optimal solution of the problem. This
is done by adding suitable pointers such that a simple backtracing starting at an
optimal value constructs an optimal solution without increasing the running time.

One of the main drawbacks of dynamic programming algorithms is that they
need a lot of space. During the execution of the dynamic programming algorithm
above described, for each i ∈ {2,3, . . . ,n} and j ∈ {1,2, . . . ,n−1}, we have to keep
all the values OPT [S,ci] for all sets of size j and j + 1. Hence the space needed is
Ω(2n), which means that not only the running time but also the space used by the
algorithm is exponential.

Dynamic Programming is one of the major techniques to design and analyse ex-
act exponential time algorithms. Chapter 3 is dedicated to Dynamic Programming.
The relation of exponential space and polynomial space is studied in Chap. 10.

1.3 A Branching Algorithm for Independent Set 7

1.3 A Branching Algorithm for Independent Set

A fundamental and powerful technique to design fast exponential time algorithms
is Branch & Reduce. It actually comes with many different names: branching al-
gorithm, search tree algorithm, backtracking algorithm, Davis-Putnam type algo-
rithm etc. We shall introduce some of the underlying ideas of the Branch & Reduce
paradigm by means of a simple example.

Maximum Independent Set. In the MAXIMUM INDEPENDENT SET problem (MIS),
we are given an undirected graph G = (V,E). The task is to find an independent

set I ⊆V , i.e. any pair of vertices of I is non-adjacent, of maximum cardinality. For
readers unfamiliar with terms from Graph Theory, we provide the most fundamental
graph notions in Appendix .

A trivial algorithm for this problem would be to try all possible vertex subsets
of G, and for each subset to check (which can be easily done in polynomial time),
whether this subset is an independent set. At the end this algorithm outputs the size
of the maximum independent set or a maximum independent set found. Since the
number of vertex subsets in a graph on n vertices is 2n, the naive approach here
requires time Ω(2n).

Here we present a simple branching algorithm for MIS to introduce some of the
major ideas. The algorithm is based on the following observations. If a vertex v is
in an independent set I, then none of its neighbors can be in I. On the other hand,
if I is a maximum (and thus maximal) independent set, and thus if v is not in I then
at least one of its neighbors is in I. This is because otherwise I ∪{v} would be an
independent set, which contradicts the maximality of I. Thus for every vertex v and
every maximal independent set I, there is a vertex y from the closed neighborhood
N[v] of v, which is the set consisting of v and vertices adjacent to v, such that y is
in I, and no other vertex from N[y] is in I. Therefore to solve the problem on G,
we solve problems on different reduced instances, and then pick up the best of the
obtained solutions. We will refer to this process as branching.

The algorithm in Fig. 1.2 exploits this idea. We pick a vertex of minimum degree
and for each vertex from its closed neighborhood we consider a subproblem, where
we assume that this vertex belongs to a maximum independent set.

Algorithm mis1(G).
Input: Graph G = (V,E).
Output: The maximum cardinality of an independent set of G.

if |V |= 0 then
return 0

choose a vertex v of minimum degree in G
return 1+max{mis1(G\N[y]) : y ∈ N[v]}

Fig. 1.2 Algorithm mis1 for MAXIMUM INDEPENDENT SET

8 1 Introduction

Fig. 1.3 Example of a minimum degree branching algorithm. We branch on vertex a. Then in one
subproblem we branch on c, and in the other on e, etc.

The correctness of branching algorithms is usually easy to verify. The algorithm
consists of a single branching rule and its correctness follows from the discussions
above.

As an example, let us consider the performance of algorithm mis1 on the graph
G of Fig. 1.3. At the beginning the minimum vertex degree is 1, so we select one of
the vertices of degree 1, say a. We branch with 2 subproblems, the left branch corre-
sponding to G\N[a] and the right branch to G\N[b]. For the right branch there is a
unique choice and after branching on e we obtain an empty graph and do not branch
anymore. The value the algorithm outputs for this branch is 2 and this corresponds
to the maximal independent set {b,e}. For the left branch we pick a vertex of min-
imum degree (again 1), say c, and branch again with 2 subproblems. The maximal
independent sets found in the left branch are {e,c,a} and {d,a} and the algorithm
reports that the size of a maximum independent set is 3. Let us observe the interest-
ing fact that every maximal independent set can be constructed by following a path
from some leaf to the root of the search tree.

Analysing the worst case running time of a branching algorithm can be non-
trivial. The main idea is that such an algorithm is recursive and that each execution of
it can be seen as a search tree T , where a subproblem, here G′ = G\V ′, is assigned to
a node of T . Furthermore when branching from a subproblem assigned to a node of
T then any subproblem obtained is assigned to a child of this node. Thus a solution

a

b

c d

e

c d

e

G\N[a]

e

G\N[b]

e

G\N[c] G\N[d]

G\N[e]

G\N[e]

1.3 A Branching Algorithm for Independent Set 9

in a node can be obtained from its descendant branches, and this is why we use the
term branching for this type of algorithms and call the general approach Branch &
Reduce. The running time spent by the algorithm on computations corresponding
to each node is polynomial—we construct a new graph by removing some vertices,
and up to a polynomial multiplicative factor the running time of the algorithm is
upper bounded by the number of nodes in the search tree T . Thus to determine the
worst case running time of the algorithm, we have to determine the largest number
T (n) of nodes in a search tree obtained by any execution of the algorithm on an
input graph G having n vertices. To compute T (n) of a branching algorithm one
usually relies on the help of linear recurrences. We will discuss in more details how
to analyze the running time of such algorithms in Chap. 2.

Let us consider the branching algorithm mis1 for MIS of Fig. 1.2. Let G be
the input graph of a subproblem. Suppose the algorithm branches on a vertex v of
degree d(v) in G. Let v1,v2, . . . ,vd(v) be the neighbors of v in G. Thus for solving
the subproblem G the algorithm recursively solves the subproblems G \N[v], G \
N[v1], . . . ,G\N[vd(v)] and we obtain the recurrence

T (n)≤ 1+T (n−d(v)−1)+
d(v)

∑
i=1

T (n−d(vi)−1).

Since in step 3 the algorithm chooses a vertex v of minimum degree, we have that
for all i ∈ {1,2, . . . ,d(v)},

d(v) ≤ d(vi),
n−d(vi)−1 ≤ n−d(v)−1

and, by the monotonicity of T (n),

T (n−d(vi)−1)≤ T (n−d(v)−1).

We also assume that T (0) = 1. Consequently,

T (n) ≤ 1+T (n−d(v)−1)+
d(v)

∑
i=1

T (n−d(v)−1)

≤ 1+(d(v)+1) ·T (n−d(v)−1).

By putting s = d(v)+1, we obtain

T (n) ≤ 1+ s ·T (n− s)≤ 1+ s+ s2 + · · ·+ sn/s

=
1− sn/s+1

1− s
=O∗(sn/s).

For s > 0, the function f (s) = s1/s has its maximum value for s = e and for integer
s the maximum value of f (s) = s1/s is when s = 3.

10 1 Introduction

1,0

10

0,5

x

20181614

1,25

12

0,75

0,25

8

0,0

6420

Fig. 1.4 f (s) = s1/s

Thus we obtain

T (n) =O∗(3n/3),

and hence the running time of the branching algorithm is O∗(3n/3).

Branch & Reduce is one of the fundamental paradigms in the design and analy-
sis of exact exponential time algorithms. We provide a more detailed study of this
approach in Chaps 2 and 6.

Notes

As a mathematical problem, TSP was first formulated in 1930 but the history of
the problem dates back in the 1800s when Hamilton studied related problems. See
[115] for the history of the problem. The dynamic programming algorithm for TSP
is due to Bellman [16, 17] and to Held and Karp [111]. Surprisingly, for almost 50
years of developments in Algorithms, the running time O∗(2n) of an exact algo-
rithm for TSP has not been improved. Another interesting question is on the space
requirements of the algorithm. If the maximum distance between two cities is W ,
then by making use of inclusion-exclusion (we discuss this technique in Chap. 4), it
is possible to solve the problem in timeO∗(W2n) and spaceO∗(W) [127]. Recently,
Lokshtanov and Nederlof used the discrete Fourier transform to solve TSP in time
O∗(W2n) and polynomial, i.e. nO(1) · (logW)O(1) space [154]. See also Chap. 10
for a O∗(4nnO(logn)) time and polynomial space algorithm.

1.3 A Branching Algorithm for Independent Set 11

For discussions on computational models we refer to the book of Cormen et
al. [52]; see also [61]. The classical algorithm of Schönhage and Strassen from
1971 multiplies two b-bit integers in time O(b logb log logb) [198]. Recently Fürer
improved the running time to b logb2O(log∗ b), where log∗ b is the iterated logarithm
of b, i.e. the number of times the logarithm function must be iteratively applied
before the result is at most 1 [98].

MIS is one of the benchmark problems in exact algorithms. From an exact point
of view MIS is equivalent to the problems MAXIMUM CLIQUE and MINIMUM
VERTEX COVER. It is easy to modify the branching algorithm mis1 so that it not
only finds one maximum independent set but outputs all maximal independent sets
of the input graph in time O∗(3n/3). The idea of algorithm mis1 (in a different
form) goes back to the works of Miller and Muller [155] from 1960 and to Moon
and Moser [161] from 1965 who independently obtained the following combinato-
rial bound on the maximum number of maximal independent sets.

Theorem 1.1. The number of maximal independent sets in a graph on n vertices is
at most

3n/3 if n≡ 0 (mod 3),
4 ·3(n−4)/3 if n≡ 1 (mod 3),
2 ·3(n−2)/3 if n≡ 2 (mod 3).

Moreover, all bounds of Theorem 1.1 are tight and are achievable on graphs con-
sisting of n/3 disjoint copies of K3s; one K4 or two K2s and (n−4)/3 K3s; one K2
and (n− 2)/3 copies of K3s. A generalization of this theorem for induced regular
subgraphs is discussed in [107].

While the bound 3n/3 on the number of maximal independent sets is tight, the
running time of an algorithm computing a maximum independent set can be strongly
improved. The first improvement over O∗(3n/3) was published in 1977 by Tar-
jan and Trojanowski [213]. It is a Branch & Reduce algorithm of running time
O∗(2n/3) = O(1.26n) [213]. In 1986 Jian published an improved algorithm with
running time O(1.2346n) [125]. In the same year Robson provided an algorithm of
running time O(1.2278n) [185]. All these three algorithms are Branch & Reduce
algorithms, and use polynomial space. In [185] Robson also showed how to speed
up Branch & Reduce algorithms using a technique that is now called Memorization
(and studied in detail in Chap. 10), and he established anO(1.2109n) time algorithm
that needs exponential space. Fomin, Grandoni, and Kratsch [85] showed how to
solve the problem MIS in time O(1.2202n) and polynomial space. Kneis, Langer,
and Rossmanith in [133] provided a branching algorithm with a computer-aided
case analysis to establish a running time of O(1.2132n). Very recently Bourgeois,
Escoffier, Paschos and van Rooij in [38] improved the best running time of a poly-
nomial space algorithm to compute a maximum independent set to O(1.2114n). A
significant amount of research has also been devoted to solving the maximum inde-
pendent set problem on sparse graphs [13, 37, 39, 47, 48, 97, 179].

	1 Introduction
	1.1 Preliminaries
	1.2 Dynamic Programming for TSP
	1.3 A Branching Algorithm for Independent Set

