
Marek Cygan, Fedor V. Fomin,

�ukasz Kowalik, Daniel Lokshtanov,

Dániel Marx, Marcin Pilipczuk,

Michaª Pilipczuk and Saket Saurabh

Parameterized Algorithms

May 30, 2016

Springer

Chapter 1

Introduction

A squirrel, a platypus and a hamster walk into a bar...

Imagine that you are an exceptionally tech-savvy security guard of a bar
in an undisclosed small town on the west coast of Norway. Every Friday,
half of the inhabitants of the town go out, and the bar you work at is well
known for its nightly brawls. This of course results in an excessive amount
of work for you; having to throw out intoxicated guests is tedious and rather
unpleasant labor. Thus you decide to take preemptive measures. As the town
is small, you know everyone in it, and you also know who will be likely to
�ght with whom if they are admitted to the bar. So you wish to plan ahead,
and only admit people if they will not be �ghting with anyone else at the
bar. At the same time, the management wants to maximize pro�t and is not
too happy if you on any given night reject more than k people at the door.
Thus, you are left with the following optimization problem. You have a list
of all of the n people who will come to the bar, and for each pair of people
a prediction of whether or not they will �ght if they both are admitted. You
need to �gure out whether it is possible to admit everyone except for at most
k troublemakers, such that no �ght breaks out among the admitted guests.
Let us call this problem the Bar Fight Prevention problem. Figure 1.1
shows an instance of the problem and a solution for k = 3. One can easily
check that this instance has no solution with k = 2.

3

4 1 Introduction

Alice Christos Fedor

Bob Daniel Gerhard

Erik

Fig. 1.1: An instance of theBar Fight Prevention problem with a solution
for k = 3. An edge between two guests means that they will �ght if both are
admitted

E�cient algorithms for Bar Fight Prevention

Unfortunately, Bar Fight Prevention is a classic NP-complete problem
(the reader might have heard of it under the name Vertex Cover), and so
the best way to solve the problem is by trying all possibilities, right? If there
are n = 1000 people planning to come to the bar, then you can quickly code up
the brute-force solution that tries each of the 21000 ≈ 1.07 ·10301 possibilities.
Sadly, this program won't terminate before the guests arrive, probably not
even before the universe implodes on itself. Luckily, the number k of guests
that should be rejected is not that large, k ≤ 10. So now the program only
needs to try

(
1000
10

)
≈ 2.63 · 1023 possibilities. This is much better, but still

quite infeasible to do in one day, even with access to supercomputers.
So should you give up at this point, and resign yourself to throwing guests

out after the �ghts break out? Well, at least you can easily identify some
peaceful souls to accept, and some troublemakers you need to refuse at the
door for sure. Anyone who does not have a potential con�ict with anyone else
can be safely moved to the list of people to accept. On the other hand, if some
guy will �ght with at least k + 1 other guests you have to reject him � as
otherwise you will have to reject all of his k+ 1 opponents, thereby upsetting
the management. If you identify such a troublemaker (in the example of
Fig. 1.1, Daniel is such a troublemaker), you immediately strike him from
the guest list, and decrease the number k of people you can reject by one.1

If there is no one left to strike out in this manner, then we know that each
guest will �ght with at most k other guests. Thus, rejecting any single guest
will resolve at most k potential con�icts. And so, if there are more than k2

1 The astute reader may observe that in Fig. 1.1, after eliminating Daniel and setting k = 2,
Fedor still has three opponents, making it possible to eliminate him and set k = 1. Then
Bob, who is in con�ict with Alice and Christos, can be eliminated, resolving all con�icts.

1 Introduction 5

potential con�icts, you know that there is no way to ensure a peaceful night
at the bar by rejecting only k guests at the door. As each guest who has not
yet been moved to the accept or reject list participates in at least one and at
most k potential con�icts, and there are at most k2 potential con�icts, there
are at most 2k2 guests whose fate is yet undecided. Trying all possibilities

for these will need approximately
(
2k2

k

)
≤
(
200
10

)
≈ 2.24 · 1016 checks, which

is feasible to do in less than a day on a modern supercomputer, but quite
hopeless on a laptop.

If it is safe to admit anyone who does not participate in any potential
con�ict, what about those who participate in exactly one? If Alice has a
con�ict with Bob, but with no one else, then it is always a good idea to admit
Alice. Indeed, you cannot accept both Alice and Bob, and admitting Alice
cannot be any worse than admitting Bob: if Bob is in the bar, then Alice has
to be rejected for sure and potentially some other guests as well. Therefore,
it is safe to accept Alice, reject Bob, and decrease k by one in this case. This
way, you can always decide the fate of any guest with only one potential
con�ict. At this point, each guest you have not yet moved to the accept or
reject list participates in at least two and at most k potential con�icts. It is
easy to see that with this assumption, having at most k2 unresolved con�icts
implies that there are only at most k2 guests whose fate is yet undecided,
instead of the previous upper bound of 2k2. Trying all possibilities for which

of those to refuse at the door requires
(
k2

k

)
≤
(
100
10

)
≈ 1.73 · 1013 checks.

With a clever implementation, this takes less than half a day on a laptop,
so if you start the program in the morning you'll know who to refuse at the
door by the time the bar opens. Therefore, instead of using brute force to
go through an enormous search space, we used simple observations to reduce
the search space to a manageable size. This algorithmic technique, using
reduction rules to decrease the size of the instance, is called kernelization,
and will be the subject of Chapter 2 (with some more advanced examples
appearing in Chapter 9).

It turns out that a simple observation yields an even faster algorithm for
Bar Fight Prevention. The crucial point is that every con�ict has to
be resolved, and that the only way to resolve a con�ict is to refuse at least
one of the two participants. Thus, as long as there is at least one unresolved
con�ict, say between Alice and Bob, we proceed as follows. Try moving Alice
to the reject list and run the algorithm recursively to check whether the
remaining con�icts can be resolved by rejecting at most k − 1 guests. If this
succeeds you already have a solution. If it fails, then move Alice back onto the
undecided list, move Bob to the reject list and run the algorithm recursively
to check whether the remaining con�icts can be resolved by rejecting at most
k − 1 additional guests (see Fig. 1.2). If this recursive call also fails to �nd
a solution, then you can be sure that there is no way to avoid a �ght by
rejecting at most k guests.

What is the running time of this algorithm? All it does is to check whether
all con�icts have been resolved, and if not, it makes two recursive calls. In

6 1 Introduction

Christos vs. Daniel Bob vs. Daniel Daniel vs. Erik Christos vs. Fedor

Bob vs. Christos Christos vs. Daniel

Alice vs. Bob

Ali
ce Bob

Fail Fail Fail Fail Fail Fail

B
ob

D
aniel

C
hr
ist
os D

aniel

Fail OK

D
aniel

C
hr
is
to
s

D
an
ie
l E

rik

C
hr
is
to
s Fedor

Bo
b

Christos

Fig. 1.2: The search tree for Bar Fight Prevention with k = 3. In the
leaves marked with �Fail�, the parameter k is decreased to zero, but there
are still unresolved con�icts. The rightmost branch of the search tree �nds a
solution: after rejecting Bob, Daniel, and Fedor, no more con�icts remain

both of the recursive calls the value of k decreases by 1, and when k reaches
0 all the algorithm has to do is to check whether there are any unresolved
con�icts left. Hence there is a total of 2k recursive calls, and it is easy to
implement each recursive call to run in linear time O(n + m), where m is
the total number of possible con�icts. Let us recall that we already achieved
the situation where every undecided guest has at most k con�icts with other
guests, so m ≤ nk/2. Hence the total number of operations is approximately
2k · n · k ≤ 210 · 10,000 = 10,240,000, which takes a fraction of a second
on today's laptops. Or cell phones, for that matter. You can now make the
Bar Fight Prevention app, and celebrate with a root beer. This simple
algorithm is an example of another algorithmic paradigm: the technique of
bounded search trees. In Chapter 3, we will see several applications of this
technique to various problems.

The algorithm above runs in time O(2k · k · n), while the naive algorithm
that tries every possible subset of k people to reject runs in time O(nk).
Observe that if k is considered to be a constant (say k = 10), then both
algorithms run in polynomial time. However, as we have seen, there is a quite
dramatic di�erence between the running times of the two algorithms. The
reason is that even though the naive algorithm is a polynomial-time algorithm
for every �xed value of k, the exponent of the polynomial depends on k.
On the other hand, the �nal algorithm we designed runs in linear time for
every �xed value of k! This di�erence is what parameterized algorithms and
complexity is all about. In the O(2k ·k ·n)-time algorithm, the combinatorial
explosion is restricted to the parameter k: the running time is exponential

1 Introduction 7

in k, but depends only polynomially (actually, linearly) on n. Our goal is to
�nd algorithms of this form.

Algorithms with running time f(k) ·nc, for a constant c independent of
both n and k, are called �xed-parameter algorithms, or FPT algorithms.
Typically the goal in parameterized algorithmics is to design FPT al-
gorithms, trying to make both the f(k) factor and the constant c in
the bound on the running time as small as possible. FPT algorithms
can be put in contrast with less e�cient XP algorithms (for slice-wise
polynomial), where the running time is of the form f(k) ·ng(k), for some
functions f, g. There is a tremendous di�erence in the running times
f(k) · ng(k) and f(k) · nc.
In parameterized algorithmics, k is simply a relevant secondary mea-
surement that encapsulates some aspect of the input instance, be it the
size of the solution sought after, or a number describing how �struc-
tured� the input instance is.

A negative example: vertex coloring

Not every choice for what k measures leads to FPT algorithms. Let us have
a look at an example where it does not. Suppose the management of the
hypothetical bar you work at doesn't want to refuse anyone at the door, but
still doesn't want any �ghts. To achieve this, they buy k−1 more bars across
the street, and come up with the following brilliant plan. Every night they
will compile a list of the guests coming, and a list of potential con�icts. Then
you are to split the guest list into k groups, such that no two guests with
a potential con�ict between them end up in the same group. Then each of
the groups can be sent to one bar, keeping everyone happy. For example,
in Fig. 1.1, we may put Alice and Christos in the �rst bar, Bob, Erik, and
Gerhard in the second bar, and Daniel and Fedor in the third bar.

We model this problem as a graph problem, representing each person as
a vertex, and each con�ict as an edge between two vertices. A partition of
the guest list into k groups can be represented by a function that assigns
to each vertex an integer between 1 and k. The objective is to �nd such a
function that, for every edge, assigns di�erent numbers to its two endpoints.
A function that satis�es these constraints is called a proper k-coloring of the
graph. Not every graph has a proper k-coloring. For example, if there are
k + 1 vertices with an edge between every pair of them, then each of these
vertices needs to be assigned a unique integer. Hence such a graph does not
have a proper k-coloring. This gives rise to a computational problem, called
Vertex Coloring. Here we are given as input a graph G and an integer k,
and we need to decide whether G has a proper k-coloring.

8 1 Introduction

It is well known that Vertex Coloring is NP-complete, so we do not
hope for a polynomial-time algorithm that works in all cases. However, it is
fair to assume that the management does not want to own more than k = 5
bars on the same street, so we will gladly settle for a O(2k ·nc)-time algorithm
for some constant c, mimicking the success we had with our �rst problem.
Unfortunately, deciding whether a graph G has a proper 5-coloring is NP-
complete, so any f(k) · nc-time algorithm for Vertex Coloring for any
function f and constant c would imply that P = NP ; indeed, suppose such
an algorithm existed. Then, given a graph G, we can decide whether G has a
proper 5-coloring in time f(5) · nc = O(nc). But then we have a polynomial-
time algorithm for an NP-hard problem, implying P = NP . Observe that
even an XP algorithm with running time f(k) ·ng(k) for any functions f and
g would imply that P = NP by an identical argument.

A hard parameterized problem: �nding cliques

The example ofVertex Coloring illustrates that parameterized algorithms
are not all-powerful: there are parameterized problems that do not seem to
admit FPT algorithms. But very importantly, in this speci�c example, we
could explain very precisely why we are not able to design e�cient algorithms,
even when the number of bars is small. From the perspective of an algorithm
designer such insight is very useful; she can now stop wasting time trying to
design e�cient algorithms based only on the fact that the number of bars is
small, and start searching for other ways to attack the problem instances. If
we are trying to make a polynomial-time algorithm for a problem and failing,
it is quite likely that this is because the problem is NP-hard. Is the theory
of NP-hardness the right tool also for giving negative evidence for �xed-
parameter tractability? In particular, if we are trying to make an f(k) · nc-
time algorithm and fail to do so, is it because the problem is NP-hard for
some �xed constant value of k, say k = 100? Let us look at another example
problem.

Now that you have a program that helps you decide who to refuse at the
door and who to admit, you are faced with a di�erent problem. The people in
the town you live in have friends who might get upset if their friend is refused
at the door. You are quite skilled at martial arts, and you can handle at most
k − 1 angry guys coming at you, but probably not k. What you are most
worried about are groups of at least k people where everyone in the group is
friends with everyone else. These groups tend to have an �all for one and one
for all� mentality � if one of them gets mad at you, they all do. Small as the
town is, you know exactly who is friends with whom, and you want to �gure
out whether there is a group of at least k people where everyone is friends
with everyone else. You model this as a graph problem where every person
is a vertex and two vertices are connected by an edge if the corresponding
persons are friends. What you are looking for is a clique on k vertices, that

12 1 Introduction

a problem involving a set of geometric objects (say, points in space, disks,
or polygons), one may parameterize by the maximum number of vertices of
each polygon or the dimension of the space where the problem is de�ned. For
each problem, with a bit of creativity, one can come up with a large number
of (combinations of) parameters worth studying.

For the same problem there can be multiple choices of parameters. Se-
lecting the right parameter(s) for a particular problem is an art.

Parameterized complexity allows us to study how di�erent parameters in-
�uence the complexity of the problem. A successful parameterization of a
problem needs to satisfy two properties. First, we should have some rea-
son to believe that the selected parameter (or combination of parameters)
is typically small on input instances in some application. Second, we need
e�cient algorithms where the combinatorial explosion is restricted to the
parameter(s), that is, we want the problem to be FPT with this parameter-
ization. Finding good parameterizations is an art on its own and one may
spend quite some time on analyzing di�erent parameterizations of the same
problem. However, in this book we focus more on explaining algorithmic tech-
niques via carefully chosen illustrative examples, rather than discussing every
possible aspect of a particular problem. Therefore, even though di�erent pa-
rameters and parameterizations will appear throughout the book, we will not
try to give a complete account of all known parameterizations and results for
any concrete problem.

1.1 Formal de�nitions

We �nish this chapter by leaving the realm of pub jokes and moving to more
serious matters. Before we start explaining the techniques for designing pa-
rameterized algorithms, we need to introduce formal foundations of param-
eterized complexity. That is, we need to have rigorous de�nitions of what a
parameterized problem is, and what it means that a parameterized problem
belongs to a speci�c complexity class.

De�nition 1.1. A parameterized problem is a language L ⊆ Σ∗ × N, where
Σ is a �xed, �nite alphabet. For an instance (x, k) ∈ Σ∗ × N, k is called the
parameter.

For example, an instance of Clique parameterized by the solution size is
a pair (G, k), where we expect G to be an undirected graph encoded as a
string over Σ, and k is a positive integer. That is, a pair (G, k) belongs to the
Clique parameterized language if and only if the string G correctly encodes
an undirected graph, which we will also denote by G, and moreover the graph

1.1 Formal de�nitions 13

G contains a clique on k vertices. Similarly, an instance of the CNF-SAT
problem (satis�ability of propositional formulas in CNF), parameterized by
the number of variables, is a pair (ϕ, n), where we expect ϕ to be the input
formula encoded as a string over Σ and n to be the number of variables of
ϕ. That is, a pair (ϕ, n) belongs to the CNF-SAT parameterized language
if and only if the string ϕ correctly encodes a CNF formula with n variables,
and the formula is satis�able.

We de�ne the size of an instance (x, k) of a parameterized problem as
|x| + k. One interpretation of this convention is that, when given to the
algorithm on the input, the parameter k is encoded in unary.

De�nition 1.2. A parameterized problem L ⊆ Σ∗ × N is called �xed-
parameter tractable (FPT) if there exists an algorithm A (called a �xed-
parameter algorithm), a computable function f : N→ N, and a constant
c such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly decides
whether (x, k) ∈ L in time bounded by f(k) · |(x, k)|c. The complexity
class containing all �xed-parameter tractable problems is called FPT.

Before we go further, let us make some remarks about the function f in
this de�nition. Observe that we assume f to be computable, as otherwise we
would quickly run into trouble when developing complexity theory for �xed-
parameter tractability. For technical reasons, it will be convenient to assume,
from now on, that f is also nondecreasing. Observe that this assumption
has no in�uence on the de�nition of �xed-parameter tractability as stated in
De�nition 1.2, since for every computable function f : N → N there exists a
computable nondecreasing function f̄ that is never smaller than f : we can
simply take f̄(k) = maxi=0,1,...,k f(i). Also, for standard algorithmic results
it is always the case that the bound on the running time is a nondecreasing
function of the complexity measure, so this assumption is indeed satis�ed in
practice. However, the assumption about f being nondecreasing is formally
needed in various situations, for example when performing reductions.

We now de�ne the complexity class XP.

De�nition 1.3. A parameterized problem L ⊆ Σ∗ × N is called slice-wise
polynomial (XP) if there exists an algorithm A and two computable functions
f, g : N→ N such that, given (x, k) ∈ Σ∗ × N, the algorithm A correctly de-
cides whether (x, k) ∈ L in time bounded by f(k)·|(x, k)|g(k). The complexity
class containing all slice-wise polynomial problems is called XP.

Again, we shall assume that the functions f, g in this de�nition are nonde-
creasing.

The de�nition of a parameterized problem, as well as the de�nitions of
the classes FPT and XP, can easily be generalized to encompass multiple
parameters. In this setting we simply allow k to be not just one nonnegative

14 1 Introduction

integer, but a vector of d nonnegative integers, for some �xed constant d.
Then the functions f and g in the de�nitions of the complexity classes FPT
and XP can depend on all these parameters.

Just as �polynomial time� and �polynomial-time algorithm� usually refer
to time polynomial in the input size, the terms �FPT time� and �FPT algo-
rithms� refer to time f(k) times a polynomial in the input size. Here f is a
computable function of k and the degree of the polynomial is independent of
both n and k. The same holds for �XP time� and �XP algorithms�, except
that here the degree of the polynomial is allowed to depend on the parameter
k, as long as it is upper bounded by g(k) for some computable function g.

Observe that, given some parameterized problem L, the algorithm de-
signer has essentially two di�erent optimization goals when designing FPT
algorithms for L. Since the running time has to be of the form f(k) · nc, one
can:

� optimize the parametric dependence of the running time, i.e., try to design
an algorithm where function f grows as slowly as possible; or

� optimize the polynomial factor in the running time, i.e., try to design an
algorithm where constant c is as small as possible.

Both these goals are equally important, from both a theoretical and a practi-
cal point of view. Unfortunately, keeping track of and optimizing both factors
of the running time can be a very di�cult task. For this reason, most research
on parameterized algorithms concentrates on optimizing one of the factors,
and putting more focus on each of them constitutes one of the two dominant
trends in parameterized complexity. Sometimes, when we are not interested in
the exact value of the polynomial factor, we use the O∗-notation, which sup-
presses factors polynomial in the input size. More precisely, a running time
O∗(f(k)) means that the running time is upper bounded by f(k) · nO(1),
where n is the input size.

The theory of parameterized complexity has been pioneered by Downey
and Fellows over the last two decades [148, 149, 150, 151, 153]. The main
achievement of their work is a comprehensive complexity theory for param-
eterized problems, with appropriate notions of reduction and completeness.
The primary goal is to understand the qualitative di�erence between �xed-
parameter tractable problems, and problems that do not admit such e�-
cient algorithms. The theory contains a rich �positive� toolkit of techniques
for developing e�cient parameterized algorithms, as well as a correspond-
ing �negative� toolkit that supports a theory of parameterized intractability.
This textbook is mostly devoted to a presentation of the positive toolkit: in
Chapters 2 through 12 we present various algorithmic techniques for design-
ing �xed-parameter tractable algorithms. As we have argued, the process of
algorithm design has to use both toolkits in order to be able to conclude that
certain research directions are pointless. Therefore, in Part III we give an
introduction to lower bounds for parameterized problems.

Chapter 2

Kernelization

Kernelization is a systematic approach to study
polynomial-time preprocessing algorithms. It is an
important tool in the design of parameterized algo-
rithms. In this chapter we explain basic kernelization
techniques such as crown decomposition, the expan-
sion lemma, the sun�ower lemma, and linear pro-
gramming. We illustrate these techniques by obtain-
ing kernels for Vertex Cover, Feedback Arc Set
in Tournaments, Edge Clique Cover, Maximum
Satisfiability, and d-Hitting Set.

Preprocessing (data reduction or kernelization) is used universally in al-
most every practical computer implementation that aims to deal with an NP-
hard problem. The goal of a preprocessing subroutine is to solve e�ciently
the �easy parts� of a problem instance and reduce it (shrink it) to its com-
putationally di�cult �core� structure (the problem kernel of the instance). In
other words, the idea of this method is to reduce (but not necessarily solve)
the given problem instance to an equivalent �smaller sized� instance in time
polynomial in the input size. A slower exact algorithm can then be run on
this smaller instance.

How can we measure the e�ectiveness of such a preprocessing subrou-
tine? Suppose we de�ne a useful preprocessing algorithm as one that runs
in polynomial time and replaces an instance I with an equivalent instance
that is at least one bit smaller. Then the existence of such an algorithm for
an NP-hard problem would imply P= NP, making it unlikely that such an
algorithm can be found. For a long time, there was no other suggestion for
a formal de�nition of useful preprocessing, leaving the mathematical analy-
sis of polynomial-time preprocessing algorithms largely neglected. But in the
language of parameterized complexity, we can formulate a de�nition of use-
ful preprocessing by demanding that large instances with a small parameter
should be shrunk, while instances that are small compared to their parameter

17

18 2 Kernelization

do not have to be processed further. These ideas open up the �lost continent�
of polynomial-time algorithms called kernelization.

In this chapter we illustrate some commonly used techniques to design
kernelization algorithms through concrete examples. The next section, Sec-
tion 2.1, provides formal de�nitions. In Section 2.2 we give kernelization algo-
rithms based on so-called natural reduction rules. Section 2.3 introduces the
concepts of crown decomposition and the expansion lemma, and illustrates
it on Maximum Satisfiability. Section 2.5 studies tools based on linear
programming and gives a kernel for Vertex Cover. Finally, we study the
sun�ower lemma in Section 2.6 and use it to obtain a polynomial kernel for
d-Hitting Set.

2.1 Formal de�nitions

We now turn to the formal de�nition that captures the notion of kerneliza-
tion. A data reduction rule, or simply, reduction rule, for a parameterized
problem Q is a function φ : Σ∗ × N → Σ∗ × N that maps an instance (I, k)
of Q to an equivalent instance (I ′, k′) of Q such that φ is computable in
time polynomial in |I| and k. We say that two instances of Q are equivalent
if (I, k) ∈ Q if and only if (I ′, k′) ∈ Q; this property of the reduction rule φ,
that it translates an instance to an equivalent one, is sometimes referred to
as the safeness or soundness of the reduction rule. In this book, we stick to
the phrases: a rule is safe and the safeness of a reduction rule.

The general idea is to design a preprocessing algorithm that consecutively
applies various data reduction rules in order to shrink the instance size as
much as possible. Thus, such a preprocessing algorithm takes as input an
instance (I, k) ∈ Σ∗ × N of Q, works in polynomial time, and returns an
equivalent instance (I ′, k′) of Q. In order to formalize the requirement that
the output instance has to be small, we apply the main principle of Parame-
terized Complexity: The complexity is measured in terms of the parameter.
Consequently, the output size of a preprocessing algorithm A is a function
sizeA : N→ N ∪ {∞} de�ned as follows:

sizeA(k) = sup{|I ′|+ k′ : (I ′, k′) = A(I, k), I ∈ Σ∗}.

In other words, we look at all possible instances of Q with a �xed parameter k,
and measure the supremum of the sizes of the output of A on these instances.
Note that this supremum may be in�nite; this happens when we do not have
any bound on the size of A(I, k) in terms of the input parameter k only.
Kernelization algorithms are exactly these preprocessing algorithms whose
output size is �nite and bounded by a computable function of the parameter.

De�nition 2.1 (Kernelization, kernel). A kernelization algorithm, or
simply a kernel, for a parameterized problem Q is an algorithm A that, given

2.1 Formal de�nitions 19

an instance (I, k) of Q, works in polynomial time and returns an equivalent
instance (I ′, k′) of Q. Moreover, we require that sizeA(k) ≤ g(k) for some
computable function g : N→ N.

The size requirement in this de�nition can be reformulated as follows:
There exists a computable function g(·) such that whenever (I ′, k′) is the
output for an instance (I, k), then it holds that |I ′|+ k′ ≤ g(k). If the upper
bound g(·) is a polynomial (linear) function of the parameter, then we say
that Q admits a polynomial (linear) kernel . We often abuse the notation and
call the output of a kernelization algorithm the �reduced� equivalent instance,
also a kernel.

In the course of this chapter, we will often encounter a situation when
in some boundary cases we are able to completely resolve the considered
problem instance, that is, correctly decide whether it is a yes-instance or a
no-instance. Hence, for clarity, we allow the reductions (and, consequently,
the kernelization algorithm) to return a yes/no answer instead of a reduced
instance. Formally, to �t into the introduced de�nition of a kernel, in such
cases the kernelization algorithm should instead return a constant-size trivial
yes-instance or no-instance. Note that such instances exist for every param-
eterized language except for the empty one and its complement, and can be
therefore hardcoded into the kernelization algorithm.

Recall that, given an instance (I, k) of Q, the size of the kernel is de�ned
as the number of bits needed to encode the reduced equivalent instance I ′

plus the parameter value k′. However, when dealing with problems on graphs,
hypergraphs, or formulas, often we would like to emphasize other aspects of
output instances. For example, for a graph problem Q, we could say that Q
admits a kernel with O(k3) vertices and O(k5) edges to emphasize the upper
bound on the number of vertices and edges in the output instances. Similarly,
for a problem de�ned on formulas, we could say that the problem admits a
kernel with O(k) variables.

It is important to mention here that the early de�nitions of kernelization
required that k′ ≤ k. On an intuitive level this makes sense, as the parame-
ter k measures the complexity of the problem � thus the larger the k, the
harder the problem. This requirement was subsequently relaxed, notably in
the context of lower bounds. An advantage of the more liberal notion of ker-
nelization is that it is robust with respect to polynomial transformations of
the kernel. However, it limits the connection with practical preprocessing.
All the kernels mentioned in this chapter respect the fact that the output
parameter is at most the input parameter, that is, k′ ≤ k.

While usually in Computer Science we measure the e�ciency of an
algorithm by estimating its running time, the central measure of the
e�ciency of a kernelization algorithm is a bound on its output size.
Although the actual running time of a kernelization algorithm is of-

20 2 Kernelization

ten very important for practical applications, in theory a kernelization
algorithm is only required to run in polynomial time.

If we have a kernelization algorithm for a problem for which there is some
algorithm (with any running time) to decide whether (I, k) is a yes-instance,
then clearly the problem is FPT, as the size of the reduced instance I is
simply a function of k (and independent of the input size n). However, a
surprising result is that the converse is also true.

Lemma 2.2. If a parameterized problem Q is FPT then it admits a kernel-
ization algorithm.

Proof. Since Q is FPT, there is an algorithm A deciding if (I, k) ∈ Q in time
f(k) · |I|c for some computable function f and a constant c. We obtain a ker-
nelization algorithm for Q as follows. Given an input (I, k), the kernelization
algorithm runs A on (I, k), for at most |I|c+1 steps. If it terminates with an
answer, use that answer to return either that (I, k) is a yes-instance or that
it is a no-instance. If A does not terminate within |I|c+1 steps, then return
(I, k) itself as the output of the kernelization algorithm. Observe that since
A did not terminate in |I|c+1 steps, we have that f(k) · |I|c > |I|c+1, and
thus |I| < f(k). Consequently, we have |I| + k ≤ f(k) + k, and we obtain a
kernel of size at most f(k) + k; note that this upper bound is computable as
f(k) is a computable function. ut

Lemma 2.2 implies that a decidable problem admits a kernel if and only
if it is �xed-parameter tractable. Thus, in a sense, kernelization can be
another way of de�ning �xed-parameter tractability.

However, kernels obtained by this theoretical result are usually of expo-
nential (or even worse) size, while problem-speci�c data reduction rules often
achieve quadratic (g(k) = O(k2)) or even linear-size (g(k) = O(k)) kernels.
So a natural question for any concrete FPT problem is whether it admits
a problem kernel that is bounded by a polynomial function of the param-
eter (g(k) = kO(1)). In this chapter we give polynomial kernels for several
problems using some elementary methods. In Chapter 9, we give more ad-
vanced methods for obtaining kernels.

2.2 Some simple kernels

In this section we give kernelization algorithms for Vertex Cover and
Feedback Arc Set in Tournaments (FAST) based on a few natural
reduction rules.

2.2 Some simple kernels 21

2.2.1 Vertex Cover

Let G be a graph and S ⊆ V (G). The set S is called a vertex cover if for
every edge of G at least one of its endpoints is in S. In other words, the
graph G − S contains no edges and thus V (G) \ S is an independent set. In
the Vertex Cover problem, we are given a graph G and a positive integer
k as input, and the objective is to check whether there exists a vertex cover
of size at most k.

The �rst reduction rule is based on the following simple observation. For
a given instance (G, k) of Vertex Cover, if the graph G has an isolated
vertex, then this vertex does not cover any edge and thus its removal does
not change the solution. This shows that the following rule is safe.

Reduction VC.1. If G contains an isolated vertex v, delete v from G. The
new instance is (G− v, k).

The second rule is based on the following natural observation:

If G contains a vertex v of degree more than k, then v should be in
every vertex cover of size at most k.

Indeed, this is because if v is not in a vertex cover, then we need at
least k + 1 vertices to cover edges incident to v. Thus our second rule is the
following.

Reduction VC.2. If there is a vertex v of degree at least k+ 1, then delete
v (and its incident edges) from G and decrement the parameter k by 1. The
new instance is (G− v, k − 1).

Observe that exhaustive application of reductions VC.1 and VC.2 completely
removes the vertices of degree 0 and degree at least k + 1. The next step is
the following observation.

If a graph has maximum degree d, then a set of k vertices can cover at
most kd edges.

This leads us to the following lemma.

Lemma 2.3. If (G, k) is a yes-instance and none of the reduction rules VC.1,
VC.2 is applicable to G, then |V (G)| ≤ k2 + k and |E(G)| ≤ k2.

Proof. Because we cannot apply Reductions VC.1 anymore on G, G has
no isolated vertices. Thus for every vertex cover S of G, every vertex of
G − S should be adjacent to some vertex from S. Since we cannot apply
Reductions VC.2, every vertex of G has degree at most k. It follows that

22 2 Kernelization

|V (G − S)| ≤ k|S| and hence |V (G)| ≤ (k + 1)|S|. Since (G, k) is a yes-
instance, there is a vertex cover S of size at most k, so |V (G)| ≤ (k + 1)k.
Also every edge of G is covered by some vertex from a vertex cover and every
vertex can cover at most k edges. Hence if G has more than k2 edges, this is
again a no-instance. ut

Lemma 2.3 allows us to claim the �nal reduction rule that explicitly bounds
the size of the kernel.

Reduction VC.3. Let (G, k) be an input instance such that Reductions VC.1
and VC.2 are not applicable to (G, k). If k < 0 and G has more than k2 + k
vertices, or more than k2 edges, then conclude that we are dealing with a
no-instance.

Finally, we remark that all reduction rules are trivially applicable in linear
time. Thus, we obtain the following theorem.

Theorem 2.4. Vertex Cover admits a kernel with O(k2) vertices and
O(k2) edges.

2.2.2 Feedback Arc Set in Tournaments

In this section we discuss a kernel for the Feedback Arc Set in Tourna-
ments problem. A tournament is a directed graph T such that for every pair
of vertices u, v ∈ V (T), exactly one of (u, v) or (v, u) is a directed edge (also
often called an arc) of T . A set of edges A of a directed graph G is called a
feedback arc set if every directed cycle of G contains an edge from A. In other
words, the removal of A from G turns it into a directed acyclic graph. Very
often, acyclic tournaments are called transitive (note that then E(G) is a
transitive relation). In the Feedback Arc Set in Tournaments problem
we are given a tournament T and a nonnegative integer k. The objective is
to decide whether T has a feedback arc set of size at most k.

For tournaments, the deletion of edges results in directed graphs which
are not tournaments anymore. Because of that, it is much more convenient
to use the characterization of a feedback arc set in terms of �reversing edges�.
We start with the following well-known result about topological orderings of
directed acyclic graphs.

Lemma 2.5. A directed graph G is acyclic if and only if it is possible to
order its vertices in such a way such that for every directed edge (u, v), we
have u < v.

We leave the proof of Lemma 2.5 as an exercise; see Exercise 2.1. Given
a directed graph G and a subset F ⊆ E(G) of edges, we de�ne G~ F to be
the directed graph obtained from G by reversing all the edges of F . That is,
if rev(F) = {(u, v) : (v, u) ∈ F}, then for G ~ F the vertex set is V (G)

Chapter 3

Bounded search trees

In this chapter we introduce a variant of exhaustive
search, namely the method of bounded search trees.
This is one of the most commonly used tools in the de-
sign of �xed-parameter algorithms. We illustrate this
technique with algorithms for two di�erent parameter-
izations of Vertex Cover, as well as for the prob-
lems (undirected) Feedback Vertex Set and Clos-
est String.

Bounded search trees, or simply branching, is one of the simplest and most
commonly used techniques in parameterized complexity that originates in the
general idea of backtracking. The algorithm tries to build a feasible solution to
the problem by making a sequence of decisions on its shape, such as whether
to include some vertex into the solution or not. Whenever considering one
such step, the algorithm investigates many possibilities for the decision, thus
e�ectively branching into a number of subproblems that are solved one by
one. In this manner the execution of a branching algorithm can be viewed
as a search tree, which is traversed by the algorithm up to the point when a
solution is discovered in one of the leaves. In order to justify the correctness of
a branching algorithm, one needs to argue that in case of a yes-instance some
sequence of decisions captured by the algorithm leads to a feasible solution.
If the total size of the search tree is bounded by a function of the parameter
alone, and every step takes polynomial time, then such a branching algorithm
runs in FPT time. This is indeed the case for many natural backtracking
algorithms.

More precisely, let I be an instance of a minimization problem (such as
Vertex Cover). We associate a measure µ(I) with the instance I, which, in
the case of FPT algorithms, is usually a function of k alone. In a branch step
we generate from I simpler instances I1, . . . , I` (` ≥ 2) of the same problem
such that the following hold.

51

52 3 Bounded search trees

1. Every feasible solution S of Ii, i ∈ {1, . . . , `}, corresponds to a feasible
solution hi(S) of I. Moreover, the set{

hi(S) : 1 ≤ i ≤ ` and S is a feasible solution of Ii

}
contains at least one optimum solution for I. Informally speaking, a
branch step splits problem I into subproblems I1, . . . , I`, possibly tak-
ing some (formally justi�ed) greedy decisions.

2. The number ` is small, e.g., it is bounded by a function of µ(I) alone.
3. Furthermore, for every Ii, i ∈ {1, . . . , `}, we have that µ(Ii) ≤ µ(I) − c

for some constant c > 0. In other words, in every branch we substantially
simplify the instance at hand.

In a branching algorithm, we recursively apply branching steps to instances
I1, I2, . . . , I`, until they become simple or even trivial. Thus, we may see an
execution of the algorithm as a search tree, where each recursive call cor-
responds to a node: the calls on instances I1, I2, . . . , I` are children of the
call on instance I. The second and third conditions allow us to bound the
number of nodes in this search tree, assuming that the instances with non-
positive measure are simple. Indeed, the third condition allows us to bound
the depth of the search tree in terms of the measure of the original instance,
while the second condition controls the number of branches below every node.
Because of these properties, search trees of this kind are often called bounded
search trees. A branching algorithm with a cleverly chosen branching step
often o�ers a drastic improvement over a straightforward exhaustive search.

We now present a typical scheme of applying the idea of bounded search
trees in the design of parameterized algorithms. We �rst identify, in polyno-
mial time, a small (typically of size that is constant, or bounded by a function
of the parameter) subset S of elements of which at least one must be in some
or every feasible solution of the problem. Then we solve |S| subproblems:
for each element e of S, create one subproblem in which we include e in the
solution, and solve the remaining task with a reduced parameter value. We
also say that we branch on the element of S that belongs to the solution.
Such search trees are analyzed by measuring the drop of the parameter in
each branch. If we ensure that the parameter (or some measure bounded by
a function of the parameter) decreases in each branch by at least a constant
value, then we will be able to bound the depth of the search tree by a function
of the parameter, which results in an FPT algorithm.

It is often convenient to think of branching as of �guessing� the right
branch. That is, whenever performing a branching step, the algorithm guesses
the right part of an (unknown) solution in the graph, by trying all possibili-
ties. What we need to ensure is that there will be a sequence of guesses that
uncovers the whole solution, and that the total time spent on wrong guesses
is not too large.

We apply the idea of bounded search trees to Vertex Cover in Sec-
tion 3.1. Section 3.2 brie�y discusses methods of bounding the number of

3.1 Vertex Cover 53

nodes of a search tree. In Section 3.3 we give a branching algorithm for
Feedback Vertex Set in undirected graphs. Section 3.4 presents an al-
gorithm for a di�erent parameterization of Vertex Cover and shows how
this algorithm implies algorithms for other parameterized problems such as
Odd Cycle Transversal and Almost 2-SAT. Finally, in Section 3.5 we
apply this technique to a non-graph problem, namely Closest String.

3.1 Vertex Cover

As the �rst example of branching, we use the strategy on Vertex Cover.
In Chapter 2 (Lemma 2.23), we gave a kernelization algorithm which in time
O(n
√
m) constructs a kernel on at most 2k vertices. Kernelization can be

easily combined with a brute-force algorithm to solve Vertex Cover in
time O(n

√
m+4kkO(1)). Indeed, there are at most 22k = 4k subsets of size at

most k in a 2k-vertex graph. Thus, by enumerating all vertex subsets of size at
most k in the kernel and checking whether any of these subsets forms a vertex
cover, we can solve the problem in time O(n

√
m + 4kkO(1)). We can easily

obtain a better algorithm by branching. Actually, this algorithm was already
presented in Chapter 1 under the cover of the Bar Fight Prevention
problem.

Let (G, k) be a Vertex Cover instance. Our algorithm is based on the
following two simple observations.

� For a vertex v, any vertex cover must contain either v or all of its
neighbors N(v).

� Vertex Cover becomes trivial (in particular, can be solved opti-
mally in polynomial time) when the maximum degree of a graph is
at most 1.

We now describe our recursive branching algorithm. Given an instance
(G, k), we �rst �nd a vertex v ∈ V (G) of maximum degree in G. If v is of
degree 1, then every connected component of G is an isolated vertex or an
edge, and the instance has a trivial solution. Otherwise, |N(v)| ≥ 2 and we
recursively branch on two cases by considering

either v, or N(v) in the vertex cover.

In the branch where v is in the vertex cover, we can delete v and reduce
the parameter by 1. In the second branch, we add N(v) to the vertex cover,
delete N [v] from the graph and decrease k by |N(v)| ≥ 2.

The running time of the algorithm is bounded by

54 3 Bounded search trees

(the number of nodes in the search tree)× (time taken at each node).

Clearly, the time taken at each node is bounded by nO(1). Thus, if τ(k) is the
number of nodes in the search tree, then the total time used by the algorithm
is at most τ(k)nO(1).

In fact, in every search tree T that corresponds to a run of a branching
algorithm, every internal node of T has at least two children. Thus, if
T has ` leaves, then the number of nodes in the search tree is at most
2` − 1. Hence, to bound the running time of a branching algorithm, it
is su�cient to bound the number of leaves in the corresponding search
tree.

In our case, the tree T is the search tree of the algorithm when run with
parameter k. Below its root, it has two subtrees: one for the same algorithm
run with parameter k − 1, and one recursive call with parameter at most
k − 2. The same pattern occurs deeper in T . This means that if we de�ne a
function T (k) using the recursive formula

T (i) =

{
T (i− 1) + T (i− 2) if i ≥ 2,
1 otherwise,

then the number of leaves of T is bounded by T (k).
Using induction on k, we prove that T (k) is bounded by 1.6181k. Clearly,

this is true for k = 0 and k = 1, so let us proceed for k ≥ 2:

T (k) = T (k − 1) + T (k − 2) ≤ 1.6181k−1 + 1.6181k−2

≤ 1.6181k−2(1.6181 + 1) ≤ 1.6181k−2(1.6181)2 ≤ 1.6181k.

This proves that the number of leaves is bounded by 1.6181k. Combined with
kernelization, we arrive at an algorithm solving Vertex Cover in time
O(n
√
m+ 1.6181kkO(1)).

A natural question is how did we know that 1.6181k is a solution to the
above recurrence. Suppose that we are looking for an upper bound on function
T (k) of the form T (k) ≤ c·λk, where c > 0, λ > 1 are some constants. Clearly,
we can set constant c so that the initial conditions in the de�nition of T (k)
are satis�ed. Then, we are left with proving, using induction, that this bound
holds for every k. This boils down to proving that

c · λk ≥ c · λk−1 + c · λk−2, (3.1)

since then we will have

T (k) = T (k − 1) + T (k − 2) ≤ c · λk−1 + c · λk−2 ≤ c · λk.

3.2 How to solve recursive relations 55

Observe that (3.1) is equivalent to λ2 ≥ λ + 1, so it makes sense to look
for the lowest possible value of λ for which this inequality is satis�ed; this is
actually the one for which equality holds. By solving equation λ2 = λ+ 1 for

λ > 1, we �nd that λ = 1+
√
5

2 < 1.6181, so for this value of λ the inductive
proof works.

The running time of the above algorithm can be easily improved using the
following argument, whose proof we leave as Exercise 3.1.

Proposition 3.1. Vertex Cover can be solved optimally in polynomial
time when the maximum degree of a graph is at most 2.

Thus, we branch only on the vertices of degree at least 3, which immediately
brings us to the following upper bound on the number of leaves in a search
tree:

T (k) =

{
T (k − 1) + T (k − 3) if k ≥ 3,
1 otherwise.

Again, an upper bound of the form c ·λk for the above recursive function can
be obtained by �nding the largest root of the polynomial equation λ3 = λ2+1.
Using standard mathematical techniques (and/or symbolic algebra packages)
the root is estimated to be at most 1.4656. Combined with kernelization, this
gives us the following theorem.

Theorem 3.2. Vertex Cover can be solved in time O(n
√
m+1.4656kkO(1)).

Can we apply a similar strategy for graphs of vertex degree at most 3?
Well, this becomes more complicated as Vertex Cover is NP-hard on this
class of graphs. But there are more involved branching strategies, and there
are faster branching algorithms than the one given in Theorem 3.2.

3.2 How to solve recursive relations

For algorithms based on the bounded search tree technique, we need to bound
the number of nodes in the search tree to obtain an upper bound on the
running time of the algorithm. For this, recurrence relations are used. The
most common case in parameterized branching algorithms is when we use
linear recurrences with constant coe�cients. There exists a standard tech-
nique to bound the number of nodes in the search tree for this case. If the
algorithm solves a problem of size n with parameter k and calls itself re-
cursively on problems with decreased parameters k − d1, k − d2, . . . , k − dp,
then (d1, d2, . . . , dp) is called the branching vector of this recursion. For ex-
ample, we used a branching vector (1, 2) to obtain the �rst algorithm for
Vertex Cover in the previous section, and a branching vector (1, 3) for the
second one. For a branching vector (d1, d2, . . . , dp), the upper bound T (k)

