Determim'itic Finite Automaton (DFA)

$$
M=\left(Q, \sum, \delta, q_{01} F\right)
$$

Q: states (memory)
Σ : alphabet
$\delta:$ transition function $\delta: Q \times \bar{\Sigma} \rightarrow Q$
q_{0} : initial state
F: set of final(accepting) states (marked (O))
example

A DEA $m=\left(Q, \Sigma, \delta, q_{0}, F\right)$ accepts a string $\omega \in \Sigma^{*}$ $\mathbb{I V}_{\sqrt{\prime}}$ definition
If M reads w, starting from q_{0} and following transibow indicated by δ on each symbol of ω, M will and in a state $q \in F$.
graphically:

The lansuap L(M) of a DFA is the set of stings accepted by M

Constructing a DFA for

$$
L=\left\{\omega \in\{a, \delta\} \mid \#_{a}(\omega) \text { is odd and } H_{b}(\omega) \text { isevan }\right\}
$$

Water bottle example:

Rule: in each step either fill op a bottle completely or empty one completely

initially

$$
x=1, y=0, z=4
$$

goal

$$
\begin{aligned}
& \text { goal } \\
& x=0, y=2, z=3
\end{aligned}
$$

invariant $z=5-x-y$ so enough to keep track of x, y

legal transitions

DFA? $\quad \Sigma=\left\{x y, y x, x z, z x, y^{2}, 2 y\right\}$
$x y=$ water from doth 1 to dottle 2
not all 6 transitions legal \Rightarrow add a dead state

$$
(1,0) \xrightarrow{x y}(0,1) \xrightarrow{2 x}(1,1) \xrightarrow{x y}(0,2)
$$

Regular operations

- Union $A \cup B=\{x \mid x \in A$ or $x \in B\}$
- $\operatorname{con} c$ catenation $A \cdot B=\{x y \mid x \in A$ and $y \in B\}$
- star

$$
A^{*}=\left\{x_{1} x_{2} \cdots x_{k} \mid k \geq 0 \text { and } x_{i} \in A\right\}
$$

$(k=0 \rightarrow \varepsilon$ the emptystoins)

Theorem $1.25+1.26+1.45$
The class of regular languages is clone under each of the operations above

Union (and interaction)
ide a track position of M_{A} and M_{B} which reading ω
Here $L\left(M_{A}\right)=A, L\left(M_{B}\right)=B$
states of the form $\left(q_{i}, p_{j}\right)$
when $q_{i} \in Q_{A} \quad p_{j} \in Q_{B}$

Simulate M_{B} states $P_{j} \in Q_{B}$

Concatenation and star much non comphicatid to show directly easier with non-determinism here we can 'ques''

NFA non-determinitic $F A$

- may have many transitions on a a 0 a symbol from state
- may have no transitions from 9 - on symbol a
- may take E-moves

An NFA M is a 5-toph

$$
M=\left(Q, \sum, \delta, q_{0}, F\right)
$$

same $a)$ for DFAs, except that

$$
\delta: Q \times(\text { (uvsi }) \rightarrow P(Q) \longleftarrow \begin{aligned}
& \text { setofall } \\
& \text { scesonto of } Q
\end{aligned}
$$

symbol read

readius 010110
$L(M)$ is the set of strung w sock that then exists a path from q_{0} to some $\rho \in F$ which spells co.
A DFA is clearly also an NFA more interesting:
Theorem 1.39
Every NFA has an equivalent DFA proof idea: Keeptrack on the set of states that an NFA M can be in after readius a otrins $x \in \Sigma^{*}$

E-clooore:
a state p is E-veachable fromastatiz $\hat{\pi}$

$$
\begin{equation*}
\text { (q) } \varepsilon_{0} 0 \stackrel{\Sigma}{\underline{\Sigma}} 0 \underline{\varepsilon}, \ldots \underline{\varepsilon} \tag{p}
\end{equation*}
$$

For a siven subset $k \subseteq Q$ the ε-clooun of K is the nt $E(K)=\left\{p \in Q \left\lvert\, \begin{array}{c}\text { pis } \varepsilon \text {-reachable from } \\ \text { some } q \in K\end{array}\right.\right\}$

$$
K \subseteq E(K)
$$

un ε-clojors to track when M coold be atto readins any prefix of ω

Posuise accaphus rath

$$
q_{0} \stackrel{\varepsilon}{\sim}>q_{i_{1}} a_{1}, q_{i_{2}} \stackrel{\sum}{\sim} q_{i, s} q_{3} q_{i 4} \sum_{n}^{\varepsilon} \quad \sum_{\rightarrow}^{\varepsilon} q \in F
$$

Given M we can construct a DFA M^{\prime} with at moot $2^{Q_{m}}$ states such that M accepts) $\omega \Leftrightarrow m^{\prime}$ accepts ω

Important: This construction may take exponential time!
Hence it is not so cextell alsonthmically But very unfurl for cloison properties see next pap.

Thum $1.45 \quad A_{1}, A_{2}$ regolar $\Rightarrow A_{1} \circ A_{2}$ resular

Thum $1.47 \quad A_{11} A_{2}$ regular $\Rightarrow A_{1} \cdot A_{2}$ reguler

Thom 1.49 A resular $\Rightarrow A^{*}$ resular

Theorem
Let L and L ' be vesular lansuape Then each of the following an aloo vesuler lansuage

1. LuL'
2. $\bar{L} \quad=\left\{\omega \in \Sigma^{*} \mid \omega \& L\right\}$
3. $L \cap L^{\prime}=\overline{\bar{L} \cup \bar{L}}$
4. $L-L^{\prime}=\operatorname{Ln} \overline{L^{\prime}}$
5. $L \cdot L$
6. L^{*}
1.3 Regular expressions

The value of a regular expression oo r \sum is a subat of $\Sigma^{*} a^{*}(a v b) s^{*} 0$ aba Ex: $:(001)^{*}=30,13^{*}$ retort all binamstrings

- $\Sigma^{*} 1=$ all strings ore Σ which engin 1
- Precomna order of regular opemtions

$$
*>0>u
$$

- Except when () change this

Definition 1.52
R is a regular expression orr \sum if R is

1. a for some $a \in \sum$,
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ when R_{1} and R_{2} are reg. exproou \sum
5. $\left(R_{1} \circ R_{2}\right)$
G. $\left(R_{1}^{*}\right)$ whir R_{1} is a regexps ore \sum

Notation

$$
\begin{aligned}
& \left.R^{+}=R o R^{*} \Leftrightarrow R^{*}=R^{+} u\right\} \varepsilon l \\
& L(R)=\text { languan genatitd by } R
\end{aligned}
$$

Theoren 1.54
L is resular $\Leftrightarrow L=L(R)$ forrome rejoler exprosion

Corollary
Let \sum scan al forbet and $L \subseteq \Sigma^{*}$
Then the followins are equivalunt
(1) $L=L(M)$ for jome DFA M
(a) $L=L\left(M^{\prime}\right)$ for roma NFA m^{\prime}
(3) $L=L(R)$ for sonse resular exprosion R

