Coding Tuning Machine -
The Universal Toning Machion

Universal alphabet:

$$
A^{*}=\left\{a_{1}, a_{2}, a_{3}, \ldots \ldots\right\} \text { os set }
$$

Universal state set:

$$
Q^{*}=\left\{q_{1}, q_{2}, q_{3}, \cdots,\right\} \infty \operatorname{set}
$$

Given a TM $M=\left(Q, \sum, \Gamma, \delta, q_{0}, q_{\text {acc }}, q_{1 r y}\right)$ when $|Q|=r$ and $|M|=t$
Rename Q to $\left\{q_{1}, q_{2}, \ldots, q_{r}\right\}$ and

$$
\Gamma \text { to }\left\{a_{1}, a_{2}, \ldots, a_{t}\right\}
$$

Conclusion: Every TM M has an equivalent $\mathrm{Tm}^{\prime} \mathrm{m}^{\prime}$ with $Q\left(m^{\prime}\right) \leq Q^{*}$ prefix and $\Gamma\left(m^{\prime}\right) \leq \Gamma^{*}$ prefix
un binary number $\quad q_{7}=q_{111} \quad a_{5}=a_{101}$
Code fora TM M (assume M isdeterninistic)
List of tuples of the kind $\left.\quad\left(\left(q_{i}, a_{j}\right),\left(q_{s}, q_{q},\right\}\right)\right)$
where $\{\in\{R, L, S\}$
When $r=|Q(m)|$ and $t=|\Gamma(M)|$
WL may assume $q_{1} \sim q_{0}$ (initial), $q_{r-1}=q_{\text {accept }}$ and $q_{r}=q_{\text {reject }}$ and now wi can contr the code of $M a s$

$$
\langle m\rangle=\left(\left(q_{1}, q_{1}\right),\left(q_{f_{1}} a_{q_{1}} R\right)_{,}\left(\left(q_{1}, q_{2}\right)_{1}(-1-1-)\right), \ldots,\left(q_{r-2,} a_{t}\right)_{1}\left(q_{1}, q_{l}, 1\right)\right)
$$

Similarly we can code strings $w \in \Gamma^{*}$:
If $w=a_{7} a_{1} a_{2} a_{3}$ then $\langle w\rangle=\left(a_{7}\right)\left(a_{1}\right)_{1}\left(a_{2}\right)_{1}\left(a_{3}\right)$
So we can code all Tuning Machine)
using the alphabet

Universal Toning machine U
Takes in pat of the form $\langle m\rangle\langle w\rangle$
and $u n$, 3 tapes to simokit mon w:
Initicly:

$$
\begin{aligned}
& \text { tape } 1 \quad \nabla\langle w\rangle \\
& \text { tuple } 2 \nabla\langle m\rangle \\
& \text { tape } 3 \quad \nabla q_{1}
\end{aligned}
$$

One step of simulation:
Let $q=$ state on $\operatorname{tape} 3$
$a=$ symbol under head on tape
Find entry for $(q, 9)$ on tape 2 and perform change on tapesi come 3: If entryis $((q, a)(p, b, b))$ then
newsymber on tape 1 is 6 and hand moves left newstah on tap 3 is p
If $p=q_{r-1}$, then U enters its accept statcond stops
If $p=q_{r}$, the U enters its reject station and stops

Easy to re that:
\bigcup accepts/rejects $\langle m\rangle\langle w\rangle$

M accepts/rejects W
and the deterministic TM M loops on w if and only if U loopoon $\langle m\rangle\langle\omega\rangle$

Enomerators
Toring machine with an output tape
 first strins printed

$$
\omega_{1} \Delta \omega_{2} \Delta \omega_{3} \Delta \ldots
$$

Estarts on the empty strins and ruas forever
From timc to tion E points a strins w_{i} on its out pottape
$L(E)=\{\omega \mid \omega$ is puinted dy $E\} \leftarrow$ over ∞ fime
L is enomerabh if $L=L(E)$ forsome enomurator
E.g. $L=\left\{0^{2^{n}} \mid n \geq 0\right\}$ is enomerndle

Theorem3.21 L is enumensle

$$
\begin{aligned}
& \hat{v^{2}} L \text { is recognizabh } \\
& (L=L(m) \text { for some DTM } M)
\end{aligned}
$$

- On input $\langle w\rangle$ the TM ME starts the enomentor E on thempty string
- whenever E prints a strains w', ME compares w^{\prime} with w
- If $w=w^{\prime}, M_{E} \operatorname{acce}$ its w Eld it restarts E and waits for oust string wi printed by E

Clearly $L\left(M_{E}\right) \subseteq L(E)$ since M_{E} can only accept w if it is punted by E
$A l_{\text {so }} L(E) \subseteq L\left(M_{E}\right)$ since
$w \in L(E) \Rightarrow E$ eventually paints ω.
\# Let $L=L(M)$ for a DTM M
Let \sum be the input alphabet form and order the strings in \sum^{*} as
$s_{1}, s_{2}, s_{3} \ldots s_{k}, s_{k+1} \ldots .$.
Lexicographically
$E_{m}:$ For $i=1$ to ∞
round i $\begin{aligned} & \text { Simulate } m \text { for i steps on } \\ & \text { each of the sting } s, s m=i\end{aligned}$
and point s; if macceots it
in less than it steps
\#s, \#s $s_{L} \# \cdots s_{c} \# \in$ strings listed Uxicographically on one of $E_{m}{ }^{\prime}$, tapes
Soppon Maccepts w after p stefo and $\omega=S_{k}$ (h^{\prime} th string in lex order of 2^{x}) Then E_{m} will paint w in every round n where $n \geq \max \{p, k\}$
So $\omega \in L(m) \Rightarrow E_{m}$ prints ω (∞ many times) and E_{m} only print, strings from $L(M)$ Hence $L\left(E_{m}\right)=L(m)$

Hilbert's 10^{\prime} th problem
$D=\left\{\langle p\rangle \mid\right.$ pis a polynomiom with an $\left\{\begin{array}{c}\text { integral root }\end{array}\right\}$ integral root
ex of polynomiom

$$
\begin{aligned}
& p(x, y, 2)=6 x^{2} y^{3} z-8 x y z+2 y^{2} z^{6} \\
& x=y=2=1 \text { is a root as } p(1,1,1)=6-8+2=0
\end{aligned}
$$

Hilbert asked forms algonthm to decide D it turns out that no such al gonthm exists!

Both Dan D, are Toring-recosnizable as a NDTM can guess a solution when one exists.
A deterministic Ton for D_{1} can check for x in

$$
0,1,-1,2,-2,3,-3 \ldots
$$

This Tm cande formed into a decider since

$$
P(x)=c_{1} x^{n}+c_{2} x^{n-1}+\cdots+c_{1} x+c_{0} \text { ha) a root }
$$

if and only of it ha, a root $\left.x \in\left\{-(n+1) \cdot \frac{c_{\text {max }}}{\left|c_{1}\right|}, \ldots,\right)^{(n+1)} \right\rvert\, \frac{c_{\text {max }} \mid}{\left|c_{1}\right|}$ Hence the Tmonly needs to chuck values in the interval

Church-Torins thesis
\exists algonthm for a decision problem L
i
7 DTM M which decides L

We can un encoding ala $\langle M\rangle$ and $\langle w\rangle$ for all decision problems

$$
\begin{aligned}
& A=\{\langle G\rangle \mid G \text { is a connectul staph }\} \\
& \langle G\rangle=\left(v_{1}, v_{2}, \ldots, v_{n}\right),\left(e_{1}\right),\left(e_{2}\right), \ldots,\left(e_{n}\right)
\end{aligned}
$$

when $\left(e_{i}\right)=\left(u_{i}, w_{i}\right)$ for pone pair

$$
u_{i}, w_{i} \in\left\{v_{1}, v_{2}, \ldots, v_{n}\right\} \text { of distinct }
$$ vertios

Given $\langle G\rangle$ a DTp can check whet the $\langle\omega\rangle \in A$ by performing a Brach. First search from ${ }^{\text {s, }}$

