Coding Turing Machines -
The Universal Turing Machine
Universal alphabet:

$$A^* = 2a_1, a_2, a_3, \dots 2 \infty$$
 set
Universal state set:
 $Q^* = 1a_1, a_2, a_3, \dots 2 \infty$ set
Universal state set:
 $Q^* = 1a_1, a_2, a_3, \dots 2 \infty$ set
Given a TM $M = (Q_1 Z_1 \Gamma_1 S_1 a_{01}, a_{021}, a_{021})$
when $|Q| = \Gamma$ and $|\Gamma| = t$
Rename Q to $[a_1, a_2, \dots, a_{r_1}]$ and
 Γ to $[a_1, a_2, \dots, a_{r_1}]$ and
 Γ to $[a_1, a_2, \dots, a_{r_1}]$
Conclusion: Every TM M has an equivalent TM M'
with $Q(M') \leq Q^*$ prefix and $\Gamma(M) \leq \Gamma^*$ prefix

Use binary numbers
$$9_7 = 9_{111}$$
 $9_5 = 9_{101}$
Code for a Ten M (assome Wisdeterministic)
List of tuples of the Kind ($(9_{i,1}a_j), (9_{5,1}9_{4,1})$)
where $3 \in 3R_{i}L_{i}S$?
When $r = |Q[M]|$ and $t = |F^{T}(M)|$
We may absome $9_{i} \sim 9_{0}(initial), 9_{r-1} = 9_{accept}$ and $9_{r} = 9_{veject}$
and now we can write the code of M as

$$\langle m \gamma = ((q_{11}q_{1}), (q_{f_{1}}a_{q_{1}}R), ((q_{11}q_{2}), (-, -, -)), \dots, (q_{r-21}e), (q_{b}q_{b}))$$

Similarly we can cold strings $w \in \Gamma^{k}$:

$$|f \quad W = a_{2}a_{1}a_{2}a_{3} \quad then \quad \langle w \rangle = (a_{2})(a_{1}), (a_{2}), (a_{3})$$

So we can code all Toring Machines
using the alphabet

$$\sum_{i=1}^{i} (i_{j}) (a_{1}^{i}, q_{j}^{i}, o_{j}^{i}, (i_{j}) (a_{j}^{i}, q_{j}^{i}, h_{i}^{i}, h_$$

F

Easy to one that:

U accepts/rejects < M><w> M accepts/rejects W and the deterministic TM M. loopson w if and only if U loopson <m> <w>

$$L(E) = \frac{1}{2} w [w is printed by E \frac{1}{2} \leftarrow over \infty fine
L is environble if $L = L(E)$ for some environbox
E.g. $L = \frac{1}{2}o^{2^n} [n \ge 0]$ is environble
The source of the environble$$

Hilbert's 10'EG problem

We can un encodiuso ala and
for all dicipsion prollims
$$A = 2 < 67 \) \ (s a connected graph) $< 6> = (\sigma_1, \sigma_2, ..., \sigma_n), (e,), (e_2), ..., (e_n)$
when $(e_i) = (u_i, w_i)$ for some pair
 $u_i, w_i \in 2 \sigma_1, \sigma_2, ..., \sigma_n)$ of dishinct
we has
Siven 26> a DTM can check whether
 $w > 6A$ by performing a Brath-First-Search
from $\sigma_1$$$