Sipser 4.2 Undecidability
$A_{T m}=\{\langle M\rangle\langle\omega\rangle \mid M$ is a deterministic $T M$ and $\omega \in L(M)\}$
Theorem $4.11 \quad A_{\text {Tm }}$ is Turing-recosnizable
proof: 1. check whether $\langle M\rangle$ codes DTM if not reject $\langle m\rangle\langle\omega\rangle$
2.

U Botha universal $T m$
it will loop on $\langle m\rangle\langle w\rangle \Leftrightarrow m$ loop on W

At check whither M is a DTM
if not loop
el n sound $\langle m\rangle$ to u
M^{*} recosnius $A_{T M}$.

How can we prove that $A_{T M}$ is not decidable?

Definition 4.14 A sut S is coontable if either

1. S is finith, or
2. $\exists f: s \rightarrow \mathbb{N}$ s.t f is $1-1$ and on to

Examph

$$
S=\{2 k \mid k \in \mathbb{N}\} \quad f: 2 k \rightarrow k
$$

- $S=\sum^{*}$ fordur strinss lexicosraphically
, $S=\mathbb{Q}$ vational nombus ${ }^{?}$

$$
s=\frac{p}{q}
$$

The set S of all dinanystrins) cis coontade a) $S=30,13^{*}$

$$
\varepsilon, 0,1,01,11,001 \ldots
$$

Theorem The set B of infinite binary strings is uncountable
Proof: jupon $b_{11} \delta_{2,} b_{3} \ldots \delta_{k 1} b_{4+1} \ldots$. is a list of all infinite dinamstrinss
Define the infinite binamstring δ^{*} is follows, when $\delta^{*}(i)$ is the $i^{\prime} t h$ place is δ^{*}

$$
f^{*}(i)= \begin{cases}1 & \text { if } b_{i}(i)=0 \\ 0 & \text { if } b_{i}(i)=1\end{cases}
$$

Now d* cannot de in the list above:

$$
\text { suppon } \left.b^{x}=b_{j} \text {, the } b^{*}(j)=1-b_{j}(j) \neq b_{j}(j)\right\}
$$

Observation: Every languas over an alphabet \sum is a soot of $P\left(\Sigma^{*}\right)=$ ret. tall sobnts of Σ^{*} and with respect to the lexicographic orders $\omega_{1}, \omega_{2}, \omega_{3}, \ldots$.
of \sum^{*} each langue hover \sum corresponds 1-1 to a unique infinite binary string ob L when

$$
b_{L}(i)= \begin{cases}1 & \text { if andonlyif } \omega_{i} \in L \\ 0 & \text { if }-11-\omega_{i} \notin L\end{cases}
$$

Corollary The ret of all language over a non-trivial alphabet Σ is un countably. $(|\Sigma| \geq 1)$ Recall that Tong machine can be coded over the universal alphabet ane state nt plus a few extra symbols
let $A=\left\{q_{1}, q_{2}, \ldots\right\}, Q=\left\{q_{1}, q_{2}, \ldots\right\}$ and

$$
X=\left\{\left(1,1,1, q^{1}, 1, a, 1,1,1,1, \mid R_{1}^{1}, L^{1}, s^{\prime}\right\}\right.
$$

Then with $\Sigma=X \quad$ we cm code all TM
Cons ide the lexicographic orders of strings in \sum

$$
\begin{gathered}
\omega_{1}, w_{2}, w_{3} \cdots \omega_{p_{1}}, \cdots \cdots w_{p_{2}} \cdots \cdots \omega_{p_{3}} \cdots \cdots \\
\left\langle m_{1}\right\rangle \quad\left\langle m_{2}\right\rangle \quad\left\langle m_{3}\right\rangle
\end{gathered}
$$

This indues an ordering of all (codes of) Toringmachines

- Each Tuning machion $\left\langle M_{i}\right\rangle$ recognizes exactly one language, namely $L\left(m_{i}\right)$
- Recall that the number of language over an alphabet with at lust 2 symbols is Uncountable.
- Hencetherar (∞) many lansuapo that are Not Toning-recosnizabl.

Thcorem 4.11 $A_{\text {Tm }}$ io undecidabh

$$
A_{T M}=\{\langle m\rangle\langle\omega\rangle \mid M \text { is } T M \text { and } \omega \in L(M)\}
$$

P: Soppon H is a TM which decides $A_{T M}$

Then we can un H to duild the TM D

$D(\langle m\rangle)$: D'saction on input $\langle m\rangle$

$$
D(\langle m\rangle)=\left\{\begin{array}{l}
\text { accept if }\langle m\rangle \notin L(m) \\
\text { reject if }\langle m\rangle \in L(m)
\end{array}\right.
$$

Henna

$$
D(\langle D\rangle)=\left\{\begin{array}{l}
\text { accost if }\langle D\rangle \notin L(D) \\
\text { reject if }\langle D\rangle \in L(D)
\end{array}\right.
$$

So $\langle D\rangle \in L(D) \in\langle D\rangle \notin L(D)\}$
conclusion D cannotexist!
so H cannot exist

Matrix of TM's

	$\left\langle m_{1}\right\rangle$	$\left\langle m_{2}\right\rangle$	\ldots.	$\left.\ldots m_{i}\right\rangle$	\ldots.	$\left\langle m_{j}\right\rangle$
$\left\langle m_{1}\right\rangle$	1	1				

$\varepsilon_{n} t y\left\langle m_{i}\right\rangle\left\langle m_{j}\right\rangle= \begin{cases}1 & \text { if }\left\langle m_{j}\right\rangle \in\left[\left(m_{i}\right)\right. \\ 0 & \text { othwin }\end{cases}$

- Jupon it exists
- Then D exists (just swapping accept and rejectstate)
- Hence $D=\left\langle M_{i}\right\rangle$ for some m_{i} in the list of all TM's
- But D disagnus with m_{i} on input $\left\langle M_{i}\right\rangle$

$$
\left\langle m_{i}\right\rangle \in L\left(m_{i}\right) \in\left\langle m_{i}\right\rangle \oplus L(D)=\left\langle m_{i}\right\rangle
$$

- So D is not in the lists and hens doe, not exist \Rightarrow H doe not exist \Rightarrow Arm is not decidable

Theorem 4.22 L is Tunng-decidable
\uparrow
L and I are Toning vecojuizabh
II: Let m^{*} dicier L. m^{*} always stops and $L\left(m^{x}\right)=L$ so M^{*} recognize L and $\overline{M^{*}}$ recosnizs L :

π : Let $M_{L_{1}} M_{I} \operatorname{recosniae} L$ respectively \bar{L}
Wrong approach :
I. Ron MLonw

If M_{L} accepts we accept ω
It M_{L} rejects we reject ω

$$
\text { if } m_{c} \text { loops...??? }
$$

We need to wn M_{L} and M_{L} in parallel

M : simulateseach of M_{L}, M_{L} ovestep at a time (ondifferent tapes)
as $\omega \in L$ or $\omega \in L$ one of M_{L}, M_{L} will accept/veject aftor a finit \# of sters

Theorem For evens language L over univusalalphat. exactly one of the following holds

1) L and L are decidable
2) none of L, T are recognizable
3) L is recognizabh but L is not recognizabh or

$\bar{L} \backslash$	D	R	$N R$
D	$*$	\sim	-
R	-	-	$*$
$N R$	-	$*$	$*$

$D=$ decidable
$R=$ recogruizah
$N R=$ not $r \cos n(2 a b b$

* = possibh
- = not pous.b4

Corollary $\bar{A}_{\text {TM }}$ is not recognizable

$$
\bar{A}_{T m}=\left\{\left\langle w^{\prime}\right\rangle \left\lvert\, \begin{array}{l}
\text { 1. No prefix of } \left.\left\langle w^{\prime}\right\rangle \operatorname{cod} c\right\rangle \text { ar } T m \\
\text { 2. Forever }\langle m\rangle s \cdot t\left\langle w^{\prime}\right\rangle=\langle m\rangle\langle w\rangle \\
\text { w. have } w \notin(m)
\end{array}\right.\right.
$$

