

Consider again the TM B:

We made it such that the output < Mw> sahisfies L(Mw) = h & if w & L(M) zwi cf w & L(M)

The construction works no matter what L(MW) is when we L(M) as long as we have $L(MW) \neq \emptyset \Subset S \ W \in L(M)$ becaun this is what we need to be able to an S to decide ATM

Remark Em is Toring recognizable
ETm = 3 < w> | Either < w> is not a TW or cw>= < w> for some TW with limited
Here is how to recognize ETm:
1. check whether < w> codes a TW
if not accept < w>
2. let M be TW coded by
3. let M be TW coded by
3. simulate M on strings over
$$\Sigma^*$$
 (inpot alphabet of W)
in lex order in Iparabuli:
For i=1,2,...
simulate M for i stype on strings $w_1, w_2, ..., w_i$
according to the Lexorder $w_1, w_1, w_2, ..., w_i$
Note that if we L(M) then the algorithm
above well stop after at most p steps color
 $p = max yt_1 q$) and W accepts with the stops and we way
Corollary ETM is not Turing recognized

Two special Turing machines

$$M_{\emptyset}$$
: goes directly to its reject state
No matter what the input is
(including empty inpot)
So $J(q_0, \alpha) = 4$ reject $Fa \in T$
 $L(M_{\emptyset}) = \emptyset$

$$M_{\Xi^*}$$
: goes directly to its accept state
No matter what the input is
 $S(z_i q) = z_{accept}$ $\forall a \in M$
 $L(M_{\Xi^*}) = Z^*$

Can we formalize the idea of using a hypothetical TM X to solve a Known Undecidable public, here proving that X cannot exist?

Mapping reducibility (Sipro 5.3) Definition 5.17 f: Z*-> Z* is compotable if ITM Mf which starkd with w ends with flw) on its tape: qow => qoc f(w) Note that Mf always stops? Example 1. $f: IN \rightarrow N$ $f(x) = x^2$ 2. Mf takes as imput a string KW> and a. chuck whether Kw> is a Ten description b. If yes Mf changes <w>=<m> to <m> when MI loopsonall strings that M does not accept c. If not Mf outputs the string <w> So Mf calculates the function f: < w> ~ > < w' > When KW'S i's the output from Mf Note Mf is the same as the TM A we und to prove HALT is underidably.

If MB exists and ASB then MA decides A

Corollary 5.23
$$A \leq_{m} B$$
 and A underidable
 V B is underidable
Theorem 5.28 $A \leq_{m} B$ and B vecosnizable
 V A is vecosnizable
Corollary 5.29 $A \leq_{m} B$ and A not recognizable
 $Corollary 5.29$ $A \leq_{m} B$ and A not recognizable
 $Corollary 5.29$ $A \leq_{m} B$ and A not recognizable
 B is not vecosnizable
Recall that $E_{TM} = \frac{1}{2} < w > 1$ either w is not a TM or $< w > 2 < w > 2 < w > 1$ either w is not a TM or $< w > 2 < w > 2 < w > 1 < w > 1 < w > 2 < w > 1 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w > 2 < w$

Remark
$$A \leq_{M} B \Leftrightarrow \overline{A} \leq_{M} \overline{B}$$

let f be such that $w \in A \Subset f(w) \in B$
then $w \in \overline{A} \Subset w \notin A \Subset f(w) \notin B \boxdot f(w) \in \overline{B}$
so $w \in \overline{A} \Subset v f(w) \in \overline{B}$
Theorem 5.30 None of EQ_{TW} and EQ_{TW} are recognizable
Proof: we know that \overline{A}_{TW} is not recognizable
so it suffices to prove that $\overline{A}_{TW} \leq_{W} EQ_{TW}$ and $\overline{A}_{TW} \leq_{W} EQ_{TW}$
By the remark this the same as showing
 $A_{TW} \leq_{W} EQ_{TW}$ and $A_{TW} \leq_{W} EQ_{TW}$
 $A_{TW} \leq_{W} EQ_{TW}$ and $A_{TW} \leq_{W} EQ_{TW}$
 $A_{TW} \leq_{W} EQ_{TW}$ and $A_{TW} \leq_{W} EQ_{TW}$
 $A_{TW} \leq_{W} EQ_{TW} \leq_{W} \leq_{W} \leq_{W} \leq_{W} \leq_{W} = EQ_{TW}$
Then $\langle w \rangle \leq A_{TW} \ll 2 \ll_{W} \otimes_{W} < W \otimes_{W} \otimes$