Sipser Section 5.1
Halting problem: HALT=\{<m><w>| $\left.\begin{array}{l}M \text { is a } T m \text { and } \\ M \text { stops on } w\end{array}\right\}$
Theorem 5.1 HALT is undecidable
P: suppon the TM R deciow HALT We show that this would imply that $A_{\text {TM }}$ is decidable

f: if $\langle m\rangle$ is not a TM then $\left\langle m^{\prime}\right\rangle=\langle m\rangle$
Else $\left\langle m^{\prime}\right\rangle$ is TM that
ha) $L\left(m^{\prime}\right)=L(M)$ and
s.t m^{\prime} loops onallotrings not in L(M')

$$
\left.M_{R} \text { is a decider for } A_{T M}\right\}
$$

$$
E_{T M}=\{\langle m\rangle \mid m \text { is a T } M \text { and } L(w)=\varnothing\}
$$

Theorem 5.2 E Tm is undecidable
P : soppon S is a $T M$ which decides $E_{T M}$. We will un to construct adecidr for $A_{T M}$ and reach a contradiction.

B: check whether $\langle\mu\rangle$ coors, at TM, if not out pot m_{w} a TM with $L\left(m_{w}\right)=\varnothing$ If $\langle M\rangle$ is a TM output $T M$ M_{w} with $L\left(m_{w}\right)=\left\{\begin{array}{l}\{\omega\} \text { if } \omega \in L(m) \\ \varphi \text { if } \omega \in L(m)\end{array}\right.$
M_{w} : 1. check if input x equal, w
2. If $x \neq w$ reject
3. Eld simulate Mon w and accept ow of Macceptow

s^{*} decide ATm $之$

Consider again the TM B:

We made it such that the out put $\left\langle M_{\omega}\right\rangle$ satisfies $L\left(M_{w}\right)=\left\{\begin{array}{l}\phi \text { if } \omega \in L(M) \\ 3 \omega \text { if } \omega \in L(M)\end{array}\right.$
The construction works no matter cohat $L\left(M_{w}\right)$ is when $w \in L(m)$ as long as we have

$$
L\left(m_{w}\right) \neq \phi \Leftrightarrow \omega \in L(m)
$$

becaun this is what we need to be able to un S to device $A_{T m}$

$$
L\left(m_{w}^{\prime}\right)=\left\{\begin{array}{l}
\phi \text { if } w \notin L(m) \\
\Sigma^{*} \text { if } w \in L(m)
\end{array}\right.
$$

Remark $\bar{E}_{T m}$ is Turing recosuizsble

$$
\bar{E}_{T m}=\left\{\langle w\rangle \mid \varepsilon_{\text {either }}\langle w\rangle \text { is not a } T m \text { or }\langle w\rangle=\langle m\rangle \text { for some } T M \text { with }(m) \not(\neq \phi)\right.
$$

Here is how to recognize $\bar{E}_{T M}$:

1. check whether $\langle\omega\rangle$ codes a TM if not accept $\langle w\rangle$
2. Let M be TM coded dy $\langle w\rangle$
3. Simulate M on strings over \sum^{*} (imputalphabet of M) in lex order in parallel':

For $i=1,2, \ldots$
Simulate of for i steps on strings $\omega_{1}, \omega_{2}, \ldots \omega_{i}$ according to the lex order $\omega_{1}, w_{2}, w_{3} .$. stop once a string is acciftia
Note that if $w \in L(M)$ then the qlsonthm above wall stop after cot most p steps color $p=\max \psi t, q$) and M accepts $w i n t$ steps and $\omega=\omega_{q}$
Corollary E Tm is not Tuningrecosniabh

Two special Tuning machines
$M_{\varnothing \text { : }}$ goes directly to its reject state no matte what the input is (including empty ingot) so $\delta\left(q_{0}, a\right)=q_{\text {reject }} \quad \forall a \in \Gamma$

$$
L\left(M_{\phi}\right)=\varnothing
$$

$M_{\Sigma^{*}}$: goes directly to its accept state no matter what the input is

$$
\begin{aligned}
& \delta\left(\xi_{0, c}\right)=q_{\text {accept }} \quad \forall a \in M \\
& L\left(M_{\Sigma^{*}}\right)=\Sigma^{*}
\end{aligned}
$$

$$
E Q_{T m}=\left\{\left\langle m_{1}\right\rangle\left\langle m_{2}\right\rangle \mid m_{1} \text { and } m_{2} \text { are } T m_{s} \text { set } L\left(m_{1}\right)=L\left(m_{2}\right)\right\}
$$

Theorem EQ Tm is undecidable P: We show how to 'reduce' $E_{T m}$ to $E Q_{T M}$ Soppon $M_{E Q}$ decides $E Q_{T m}$, then we can make the Tm m^{*} :

M^{*} is a decider for ETM $\}$
Can we formative the idea of using a hypothetical TM X to solve a known undeciclabl problem, hera proving that X cannot exist?

Mapping reducibility (Sips 5.3)
Definition 5.17
$f: \Sigma^{*} \rightarrow \Sigma^{*}$ is computable if $\exists \mathrm{TM} \mathrm{M}_{f}$ which started with w end with flow) on its tape: $q_{0} \omega \stackrel{x}{\Rightarrow} q_{\text {ace }} f(\omega)$
Note that M_{f} always stops!
Example I. $f: \mathbb{N} \rightarrow \mathbb{N} \quad f(x)=x^{2}$
2. Mf takes a) input a string $\langle w\rangle$ and
a. check whether $\langle w\rangle$ io a TM description
b. If yes M_{f} changes $\langle w\rangle=\langle m\rangle$ to $\left\langle w^{\prime}\right\rangle$ when m^{\prime} loopsonall strings that m docs not accost
c. If note out pots the string $\langle w\rangle$
so m_{f} calculates the function

$$
f:\langle w\rangle \longrightarrow\left\langle w^{\prime}\right\rangle
$$

whir $\left\langle w^{\prime}\right\rangle$ is the out pot from M_{f}
Note M_{f} is the same as the TM of we and to prove HALT is undecidabh.

Definition 5.20
Let A, B be language. We say that A is mapping reducible to B if \exists a computable function

$$
f: \Sigma^{*} \rightarrow \Sigma^{*} \text { s.t } \omega \in A \Leftrightarrow f(\omega) \in B
$$

We write $A \leq_{m} B$ and call f a reduction of A to B

Example $\langle m\rangle \stackrel{f}{\longrightarrow}\langle m\rangle\left\langle m_{\varnothing}\right\rangle$
is a mapping reduction from $E_{T m}$ to $E Q_{T m}$
Theorems .22 If $A \leq_{M} B$ and B is decidable, then A is decidable

If m_{B} exists and $A \leq{ }_{m} B$ then M_{A} decides A

Corollary $5.23 \quad A \leq{ }_{m} B$ and A undecidable $\sqrt{I I} B$ is undecidabh
Theorem 5.28 $A \leq_{M} B$ and B recognizable
$\stackrel{H}{v}$
A is recognizable
Corollarysid $A \leq_{M} B$ and A not recognizabh
$\stackrel{H}{U}$
B is not recognizable
Recall that $\bar{E}_{T m}=\{\langle w\rangle \mid$ e.tlue w is not a $T m$ or $\langle w\rangle=\langle m\rangle$ foraTm with $\langle(m)| \neq p \mid$ we have seen that $\bar{E}_{T m}$ is recosni2abl
claim $A_{T m} \leq m \overline{E_{T m}}$
Given $\langle m\rangle\langle w\rangle$ we construct $\left\langle m_{w}^{\prime}\right\rangle$ s. $t m_{w}^{\prime}$ iss $T m$ and

$$
\begin{aligned}
& \text { ven }\langle m\rangle\langle\omega\rangle \text { we construct }\left\langle m_{w}^{\prime}\right\rangle=\left\{\begin{array}{l}
\phi \text { if } m \text { is not a } T m \text { or } M \text { is a Tm but } \omega \notin L(m) \\
\sum^{*} \text { othwin }(\omega \in L(m))
\end{array}\right.
\end{aligned}
$$

Now $\langle m\rangle\langle\omega\rangle \in A_{T m} \Leftrightarrow\left\langle m_{w}^{\prime}\right\rangle \in \bar{E}_{T m}$ Clearly $\langle m\rangle\langle w\rangle \xrightarrow{f}\left\langle m_{w}^{\prime}\right\rangle$ is computable (we castor code) of TM's M_{6} and $M_{\Sigma^{*}}$ in the TM which comport f)

Remark $A \leq{ }_{m} B \Leftrightarrow \bar{A} \leq{ }_{m} \bar{B}$
Let f bo such that $w \in A \Leftrightarrow f(\omega) \in B$
then $\omega \in \bar{A} \in \omega \notin A \Leftrightarrow f(\omega) \notin B \Leftrightarrow f(\omega) \in \bar{B}$
So $\omega \in \bar{A} \Leftrightarrow f(\omega) \in \bar{B}$
Theorem 5.30 None of $E Q_{T m}$ and $\overline{E Q_{T m}}$ are recognizash
Proof: Wa know that $\bar{A}_{\text {TM }}$ is not recognizable so it suffices to prove that $\bar{A}_{T m} \leq m E Q_{T M}$ and $\bar{A}_{T M} \leq \bar{m}_{T M}$

By the remark this the same as showing

$$
A_{T m} \leq m E Q_{T m} \text { and } A_{T m} \leq m E Q_{T m}
$$

$A_{T M} \leq{ }_{m} \overline{E Q}_{T m}$: Give $\langle m\rangle\langle\omega\rangle$ construct \widehat{m}_{w} set

$$
\begin{aligned}
& \text { Give }\langle m\rangle\langle\omega\rangle \text { construct } M_{w} \text { diU } \\
& L\left(\hat{m}_{w}\right)=\left\{\begin{array}{l}
\varnothing \text { if } \omega \notin L(m) \text { or }(m) \text { rota } T m \\
\Sigma^{*} \text { if } \omega \in L(m)
\end{array}\right.
\end{aligned}
$$

Then $\langle m\rangle\langle w\rangle \in A_{T m} \Leftrightarrow\left\langle\hat{m}_{w}\right\rangle\left\langle m_{\phi}\right\rangle \in \overline{E Q}_{T m}$
$A_{T m} \leq E Q_{T m}:$ Given $\langle m\rangle\langle\omega\rangle$ construct \widehat{M}_{w} a) above Then $\langle m\rangle\langle w\rangle \in A_{T m} \Leftrightarrow\left\langle\hat{m}_{w}\right\rangle\left\langle M_{\Sigma^{*}}\right\rangle \in E Q_{\text {Tm }}$

