More undecidable problems and Rice's theorem
Band on Sipser S.1 and JBJ notes on homopoge

$$H_{E} = \frac{1}{\sqrt{m}} |m is a Tm and EEL(M)|$$

Theorem H_{E} is undecidable
P: We give a mapping viduction from A_{TM} to H_{E}
 $\langle m \rangle \langle w \rangle \longrightarrow \langle m_{W} \rangle = \begin{cases} \emptyset & if w \notin L(M) \\ \emptyset & if w \notin L(M) \\ \Xi^{*} & if w \in L(M) \end{cases}$
 $\langle m \rangle \langle w \rangle \longrightarrow \langle m_{W} \rangle = \begin{cases} \emptyset & if w \notin L(M) \\ \emptyset & if w \notin L(M) \\ \Xi^{*} & if w \in L(M) \end{cases}$
So $A_{TM} \leq m_{H_{E}} (Via f above)$
and A_{TM} is undecided them H_{E} is undecided.
 $\langle m \rangle \longrightarrow \langle m_{E} \longrightarrow v e_{j}' ect \\ M_{E} \longrightarrow v e_{j}' ect \end{cases}$
 $M_{E} \subset annot exist a) otherworn M decides $A_{TM}$$

Regular_{TM} =
$$\frac{1}{2}$$
 (M is a TM and UM) is regular
Theorem 5.3 Regular_{TM} is undecidable
P: We give a mapping reduction from
A_{TM} to Regular_{TM} by showing how to construct
a TM MW s.6
 $L(MW) = \begin{cases} L'=2a^{n}b^{n} | n \ge 0 \rangle$ if well(M)
 Z^{*} if well(M)
Easy: $L(MW)$ is regular if and only if curcus EATM
So we need to show that a TM can construct MW
from CM3CWS
 M_{L}^{*} right
 M_{L}^{*} rig

Rice's Theorem (intro) A property P concerns the language of a Tonns machine M if P is about the language of M (that is, about L(M)) Examples of such properties L(M) is regular |. $L(M) = \emptyset$ λ. L(M) contains strings X, y s.t. 1x(=1y) 3. Y. L(M) contains a string × with 1×1=22 L(M) contains X; with IXil=i 5. $\forall i = 1, 2, ...$ The following property is NOT adout the languan of a TM: ZWEZKS. twhen Missterkdon w it will visit all is states except one of tace, Freject

Let
$$M_{i}$$
 be a T M_{i} s. $\in L(M_{i})$ has property P
(by assumption on P L(M_{i}) does not have $r = 1$ (P
We show how to construct a T M which
Given $\langle M \rangle \langle w \rangle$ constructs a T M_{i} $M(w)$
s.t
 $L(M(w)) = \begin{cases} \emptyset & \text{if } w \notin L(M) \text{ or } M \text{ is not a T} M_{i} \\ L(M_{i}) & \text{if } w \notin L(M) \end{cases}$

All * > E LALL A MIN > E LALL A M > KN > E A TM and KN > KN > KN > is a mapping reduction Hence LALL is undecidable D