Sipser chapter 7 Time complexity
Definition 7.1 Let M be a DTM which halts on all inputs (a decide). The running time or time complexity of m is the function $f: \mathbb{N} \rightarrow \mathbb{N}$, when $f(n)$ is the maximum number of strips that m takes on any in pot of lensth n.
Definition 7.2 Let $f, g: \mathbb{N} \rightarrow \mathbb{R}^{+}$be functions we say that $f(n) \in O(g(n))$ if then exist $c, n_{0} \in \mathbb{L}_{+}$such that $\forall_{n} \geq n_{0}: f(n) \leq c \cdot g(n)$

We say that $f(n) \in O(g(n))$ if $\lim _{n \rightarrow \infty} \frac{f(n)}{g(n)}=0$ That is, forevers $c>0$ thar exist $n_{0}=n_{0}(c)$ sit

$$
\forall n \geq n_{0} \quad f(n)<c g(n)
$$

Definition 7.7 let $t: \mathbb{N} \rightarrow \mathbb{R}^{t}$ be a function The time complexity elan) Time $(t(n))$ is the collection of all languages that are decidable in time $O(t(()))$ by a DTM

Important we are only dealing with decision problems, that is
given $\omega \in \Sigma^{*}$ does $\omega \in L$?
(where L is a given language)
Remark
If a problem has both an optimization and a decision version, then the complexity of then two are clonly related.
SPT K: Given a connected edse-weighted graph $G=(V, E, \omega)$ and a natural numbs k
Does G have a spanning tree T sit $\omega(T) \leq K$?
MST: Given a connected $x d$ ge-weishtid graph $G=(V, E, \omega)$ Find a minimum weight spanning tree T^{*} of 6 $\left(\omega\left(T^{*}\right) \leqslant \omega(T) \quad \forall\right.$ spanning tres $\left.T\right)$
Given $G=(V, E, W)$ and $K G \mathbb{N}$ we can decide whet he $\langle G, K\rangle \in S_{P} T_{K}$ by solving MST for $\langle G\rangle$ and compare $\omega\left(T^{*}\right)$ to K

$$
L G, k) \in S_{P} T_{K} \Leftrightarrow \omega\left(T^{*}\right) \leq K
$$ when T^{*} is a MST of 6 writ ω.

Conversely, if A is an alsonthm for $S_{p} T_{K}$, then we cansolve MST for G as follows:

$$
\begin{array}{ll}
k=1 & s_{p} T_{1} \div \\
k=2 & s_{p} T_{2} \div \\
\vdots & \\
k=2^{r-1} & s_{p} T_{2^{r-1}} \div \\
k=2^{r} & s_{p} T_{2^{r}}+1
\end{array} \begin{aligned}
& \text { find best } k \text { via } \\
& \text { binary search on the } \\
& \text { interval }\left[2^{r-1}, 2^{r}\right]
\end{aligned}
$$

So making $O\left(\log k^{k}\right)$ calls to of we can solve the optimization version
This is a general result: If A is analsonthm for solving the decision version of a problem L with parameter K, then we can solve the optimization version for L via $O\left(\log {h^{*}}^{*}\right)$ calls to A where K^{*} is the value of the optimal solution to the op timuzation version

Recall from Tuning machine theory:
Theorem 7.8
Let $t(n)$ be any function with $t(n) \geq n$.
Then every $t(n)$-time multitape TM M has an equivalent $O\left(t^{2}(\hat{)})\right)$-fine singltape $T M$

Definition 7.9
Let M be a NDTM which is a decide. The running time of m is the function $f: \mathbb{N}-\mathbb{N}_{N}$, where $f(n)$ is the maximum number of steps that M uss on any branch of its compotation on any input of length

NDTM (decide)

Recall from chapter 3:
Theorem 7.11 Let $t(n)$ be a function with $t(n) \geq n$
Then every $t(n)$-time NDTM has an equivalent $2^{O(t(n))}$ - time single tape TM
ALL resonable deterministic computational models are polynomially equivalent.
That is, any of them can simulate each of the other) with only a polynomial increan in running time
We coil focus on aspects of time-compluxity that are unaffected by polynomial differmex in ronnins time
Dor aim is to present fundamental properties of computation, rathe than properties of Toning machine

Definition 7. 12

$$
P=\bigcup_{k} \operatorname{TiME}\left(n^{k}\right)
$$

i.e P is the class of languages which are decidable in polynomial timon

Notes
1．P is invariant for call models of compotation that are polynomially equivalent to the deterministic singh tape TM

2．$P \sim$ class of decission problems that are realistically solvadle on a compute （forall instances）
Encoding of problems（denotal $\langle\cdots\rangle$ ）
We avoid unum encoding 10 ～ ルいいいい as this is exponentially larges than any coding such as ban k for ans $k \geq 2$
（e．g 1000 uss only 10 dits in ban 2）
Coding graphs $\langle G\rangle$
1．list of vertiou and edges＋posoibh costs in binary
2．Adjacency matrix $n \times y$ matrix $n=|V(G)|$

$$
\text { with entry }\left(i_{i j}\right)=\left\{\begin{array}{l}
1 \text { if } i j \in E(G) \\
0 \text { otlwwin }
\end{array}\right.
$$

posjiblin with coot $C_{i j}$ in binam instead of 1

Examples of problems in P

1. SpTk from previous slide
2. PATH $= \begin{cases}\langle\langle, s, t\rangle| & \left.\begin{array}{l}G \text { is a digraph }, s, t \in V(G) \text { and } \\ \\ \exists(s, t) \text {-path in } G\end{array}\right\}\end{cases}$

3. MEMBERSHIP OF CFL $=\left\{\langle G\rangle\langle\omega\rangle \left\lvert\, \begin{array}{c}G C F G \text { and } \\ \omega \in L G)\end{array}\right.\right\}$ Given $\omega \in \sum^{*}$ and G ar CFG in chomsky normal form we know $S \stackrel{*}{\Rightarrow} \omega \in$ then is a derivation worth 2|w|-1 steps

Method 1: try all derivations of lensth 2|w|-1. N ot polynomial in $|w|$ as we have up to $|R(G)|$ possible news in each ster
I If we have at least 2 in each sty, then it takes

$$
S \Rightarrow A_{1} A_{2}^{|\omega|-1} \Rightarrow A_{1} A_{2}^{\prime} A_{3}^{\prime} \Rightarrow A_{1} A_{2} A_{3}^{\prime} A_{4}^{n}
$$

Method 2: Dynamic programming
If $\omega=\varepsilon$ accept of $S \rightarrow \varepsilon$ isin K
$|\omega|>0: \omega=a_{1} a_{2} \ldots a_{n} \quad n=|\omega| a_{i} \in \sum$
Construct $n \times n$ matrix T when we coll
have $T_{i j}=\left\{A \mid A \Rightarrow a_{i} a_{i+1} \cdot a_{j}\right\}$ after the compotation A variablin 6
initially $T_{i i}=\left\{A \mid A \rightarrow a_{i} \in R\right\}$
ides: If $A \rightarrow B C$ and $B \Rightarrow a_{i}-a_{j}$

$$
c \Rightarrow a_{\mathrm{y}+1} \cdots a_{p}
$$

Solution:
For $i \in 1$ to n
For $\in i f l$ to n

$$
T_{i, j} \leftarrow \varnothing
$$

For $i \in 1$ to n

$$
T_{i i} \leftarrow\left\{A\left\{A \rightarrow a_{i} \in R\right\}\right.
$$

For $r<1$ fo $n-1$

$$
\text { For } i \in 1 \text { to } n-r
$$

$$
\text { Fork ti to } i+r-1
$$

For each rule $A \rightarrow B C$:

$$
\begin{aligned}
& \text { if } B E T_{i, k} \text { and } C E T_{h+1, i+\delta} \\
& \text { them } T_{i, i t r} \in T_{i, i+r} \cup\{A\} \\
& \text { If } S \in I_{1, n} \text { accept; elonveject }
\end{aligned}
$$

More difficult problems:
(very) difficult, but easy if we can ques):
Given an ordevirs $s=v_{,}, v_{2}, \ldots, v_{n}=t$ it is easy to chuck whet he $v_{i} v_{i t 1}$ is an are for $i=1,2 \ldots n-1$

- CLIQUE $=\left\{\langle G, k\rangle \left\lvert\, \begin{array}{l}G \text { is a graph that has } \\ \text { a complitisubgragh } w i t h \\ k \text { vertius }\end{array}\right.\right\}$

clique of size 5
${ }_{z}$ Eave if we can guess vertius $v_{i_{1}}, v_{i_{2}}, \ldots, v_{i_{k}}$ just chuck that $v_{i p} v_{i q} \in E(G) \quad \forall p \neq q \operatorname{poq} \in[I, k]$
such a at is called a certificate for $\langle G, k\rangle \in C L I Q U E$

Remark on CLIQUE:
If we just have G and k then (essentially) no better method is known than trying all $\binom{n}{k} \in O\left(n^{k}\right)$ possible subsets of size k
Remark on HAmpatH:
Here we could try all ($n-2$)! permutations of $V(G)-\{s, t\}$

Definition 7.18
A verifier for a languan L is am algonthm A_{L} such that $L=\left\{\omega \mid \exists\right.$ string c s. $G A_{L}$ accepts input $\langle w, c\rangle$
The running time of ∂_{L} is measured in terms of $n=|w|$ A_{L} is a polynomial verifier if it has conning tim $O\left(n^{k}\right)$
The string $C=C(\omega)$ is a certificate for $\omega \in L$ Note that $|c(w)| \leq$ sunning tim of A_{L}

Definition 7.19 $N P=\left\{L \left\lvert\, L \begin{array}{c}\text { has a polynomial } \\ \text { verifies }\end{array}\right.\right\}$

NDTM for HAmPATH:

1. Guess n numbers $i_{1}, i_{2} \ldots, i_{n}$ witt $i_{j} \in[1, n]$
2. Chuck for repetitions $\left(i_{p}=i_{q}, p \notin f\right)$ If a repetition is found reject
3. Cluck whither $s=v_{i_{1}}$ and $t=v_{i_{n}}$ if not reject
4 check whether $v_{i_{p}} v_{j_{p+1}}$ is an are for

$$
p=1,2, \ldots n-1
$$

If y() accept
Eld reject
Theorem 7.20
$L \in N P \Leftrightarrow L$ is decided by a NDTM

Proof: Let LENP and let A_{L} be a verifier for L sit A_{L} was in time at most $d n^{k}$ for some constant d on ingot of length n.
NDTM: on input $\omega, n=|\omega|$

1. Select non-deterministically a string C sit $|C| \leqslant d n^{k}$
2. Run $\mathcal{O L}_{L}$ on $\langle w, c\rangle$
3. Accent if A_{L} accents elan reject

Conversalig Suppion L is decided bs a NDTM M conotrect A_{m}; on input $\langle w, c\rangle$

1. Simulate M on $\langle w\rangle$ using $\langle c\rangle$ to guide which french to take (as in proof of Thu 3.16)
2. If this branch of m^{\prime} s computation results in Macceptins w, then $A_{m_{1}}$ accepts $\langle w, c\rangle$ othwwin A_{m} rejects $\langle w, c\rangle$

Now \exists c set. A_{m} accepts $\langle\omega, c\rangle \Leftrightarrow m$ accepts $\langle w\rangle$

$$
P \subseteq N P
$$

- Let $L \in P$ and let M_{2} be a polynomial guider for M_{L}

- Build V_{L} as follows

V_{L} is a verifier for $L \sin u$ it will accept $\langle w, c\rangle$ forsome $\langle c\rangle$ if and only if $W \in L$ (in which can $V_{L}^{\text {accept }}$ all $\langle w, c\rangle$ for $)$

$$
N T \operatorname{ImE}(t(b))=\left\{\begin{array}{r}
L \mid L \text { is decided by an } \\
\\
O(t(0)) \text {-time NDTM }
\end{array}\right\}
$$

Corollam7.22 NP $=\bigcup_{k} \operatorname{NTIME}\left(n^{k}\right)$

Summary
$P=\{L \mid L$ canoe decided fast $\}$
$N P=\{L \mid L$ can be verifice fast $\}$
open: $P=N P$?
know $N P \subseteq E X P T I M E=\bigcup_{k} \operatorname{TimE}\left(2^{n^{k}}\right)$

