. .

Definition 7.1 Let M be a DTM which halts on all
inputs (a duaidu). The running time or time complexity
of M is the function f: N-2IN, when
f(n) is the maximum number of stype that M takes on
any input of length n.
Definition 7.2 Let fig: IN -2 Rt be function
We say that f(n) & O(960) if then exist
c, no & 7.4 such that
$$\forall n \ge n_0$$
: $f(n) \le c.9(n)$
Definition 7.5 Let fig & IN -2 Rt
We say that $f(n) & O(961)$ if $\liminf \frac{f(0)}{3(n)} = 0$
That is, for every c>0 then exist $n_0 = n_0(c)$ set
 $\forall n \ge n_0$ f(0) < c9(n)
Definition 7.7 Let t: IN -2 Rt be a function
The time complexity class Time (t(n)) is
the collection of all languages that are
devidable in time O(t6) by a DTM

Remark
If a problem has both an optimization and a decission
uersion, then the complexity of then two are closely
velated.
SpTK: Given a connected edge-weighted graph
$$G=(V_1E_1w)$$

and a natural number K
Does G have a spanning tree T s.t $w(T) \leq K$?
MST: Given a connected edge-weighted graph $G=(V_1E_1w)$
Find a minimum weight spanning tree T* of G
 $(w(T*) \leq w(T)$ V spanning tree T)
Given $G=(V_1E_1w)$ and KGIN we can decide whether
 $\leq G_1K \geq G$ SpTK by solving MST for $\langle G \rangle$
and compare $w(T*)$ to K
 $\langle G_1K \rangle \in SpT_K \leq w(T*) \leq K$
 $\langle when T* is a MST of G wet w.$

Conversely, if A is an algorithm for SpTK, then we can solve MST for G as follows:

Recall from Turing machine theory: Theorem 7.8 Let t(n) be any fonction with t(n) ≥ n. Then every t(n)-time multitape TM M has an equivalent O(to))-fime sinstape TM Definition 7.9 Let M be a NOTM which is a decide. The running time of M is the function f: IN-JIN, where f(n) is the maximum number of steps that Muns on any branch of its compotation on any input of Censth n

Recall from Chapter 3:
Theorem 7.11 Let
$$t(n)$$
 be a function with $t(n) \ge n$
Then every $t(n)$ -time NOTM has an equivalent
 $2^{O(t(n))}$ time single tape TM
ALL resonable deterministic compotational models
are polynomially equivalent.
That is, any of them can simulate each of the
other) with only a polynomial increan in running time
We could focus on aspects of time-complexely that are
unaffected by polynomial differments in ronning time
Oor aim is to present fondamental projecties of
computation, rather then properties of Toxing machines
Definition 7.12
 $P = UTIME(n^k)$
i.e P is the class of languages which are
devidebly in polynomial time

Notes

(

Examples of problems in P
1. SpTK from previous slide
2. PATH = { | G is a digraph, siteV(G) and
S(sit)-path in G
3. MEMBERSHIP OF CFL = }| G CFG and {
We LGD
Given w G Z* and G a CFG is charsky normal form
We know S *> w @> then is a derivation with
Not polynomial in Iwi as we have up to
IR(G) | possible rules in each step
(If we have at least 2 in each sty, then it takes

$$S(2^{|W|-1})$$
 steps
 $S = 3A_1A_1 = 3A_1A_2A_3A_4^{*}A_4^{*}$

Method 2: Dynamic programming
If
$$w = 2$$
 accept iff $S - 2E$ is in R
Welloc: $w = a_1a_2 \dots a_n$ $n = |w| = a_i e E$
construct an metrix T when we will
have $T_{ij} = \frac{1}{2}A | A \Rightarrow a_i a_{ii} \dots a_j|^2$ after the composite
initially $T_{ii} = \frac{1}{2}A | A \Rightarrow a_i e R$
ide: If $A \Rightarrow BC$ and $B \Rightarrow a_i a_j$
 $C \Rightarrow a_{ji} \dots a_j$
Solution:
For $i \in | ton$
 $T_{ij} \in \mathcal{S}$
For $i \in | ton$
 $T_{ij} \in | A | A \Rightarrow a_i e R$
For $i \in | ton$
 $T_{ij} \in | A | A \Rightarrow a_i e R$
For $i \in | ton - l$
For $i \in | ton - l$
For $i \in | ton - l$
For $i \in | ton n - r$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $n - r$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i$ to $i + r - l$
For $k \in i + r -$

1001=5 2 J 34 5 Ţ. 34 2 5 (× 1 X × ĸ 2 2 x 8 1=7 K 3 ¥ ¥ 3 K Ч K K Ч 5 × **:** 5

Ъ Ţ 2 Ч 5 ΣΥ ※* ¥ ļ 2 5 (K K K K × (2 K K x ж r=2 x 2 X X K X X r=3 K 3 3 X. K Ч Ķ K Ч × 5 **:** 5 эЧ ¥ % <mark>४</mark> ∦ 2 K 4 5 ļ * (× x 2

3

Ч

5

×

More difficult problems:

- HAMPATH = 1/(G,S,E) | G is a discaple, s, E = V(G)
 and G has an (s, E) path P
 s, E V(P) = V(G)
 - (very) difficult, but easy if we can gues: Given an ordering $s = \sigma_{i}(\sigma_{2}, \dots, \sigma_{n}) = t$ it is easy to check whether $\sigma_{i}\sigma_{i}(i)$ and $\sigma_{i}(i)$ for $i=1,2\cdots n-1$ $CLIQUE = \{ \langle G_{i}k \rangle \mid G \text{ is a graph that has}$ $a \quad complete subgraph with$ $k \quad outputs$

Easy if we can guess vertices $U_{i_1}, U_{i_2}, ..., U_{i_k}$ just check that $U_{i_p}U_{i_q} \in E(G)$ $\forall p_{\neq q} p_{i_q} \in [I_i, h]$ such a set is called a certificate for $\langle G_i h \rangle \in CLIQUE$ [proof] Remark on CLIQUE:

Here we could try all (n-2)! permutations of V(G)-{s,t}

Now Ic s.E. Am accepts <w, c> => Maccepts <w>

 $P \subseteq NP$ · let LEP and let M2 bea Polynomial duide for ML Build V, as follows raccept \rightarrow reject

V_L is a verifier for L since it will accept $K_{W,C7}$ for some C_{C7} if and only if WEL (in which can V_{L} accepts < w, C > for) all C_{C7}

NTIME (tb) =
$$\left\{ L \mid L \text{ is decided by an} \\ O(to)) - time NOTA \\ O(to)) - time NOTA \\ NOTA \\ NP = \left\{ L \mid L \text{ cambe decided fast} \\ NP = \left\{ L \mid L \text{ cambe decided fast} \\ NP = \left\{ L \mid L \text{ cam be verified fast} \\ Open: P = NP? \\ Know NP \subseteq EXPTIME = UTIME(2^{nk})$$