3. SAT
$$\leq_{p}$$
 Vertex. cover
We have already over that 3-SAT \leq_{p} Chance \leq_{p} Independence \leq_{v} Vertex-cover
Here we give a direct reduction from 3-SAT to Vertex-cover
Geven an initiane $f = C_{1} \wedge C_{1} \dots \wedge C_{n}$ of 3-SAT with variables $\times_{1}, \times_{2}, \dots, \times_{n}$
. Let $K = n + 2m$ and construct a graph $G = G(F)$ with $2n + 3m$ vertice
 \circ Each variable \times_{i} is regressinted by $\circ_{v} \stackrel{o}{\sim_{v}} \stackrel{o}{\sim_$

Subset-som:
Impot:
$$\langle S,t \rangle$$
 where is a set of non-negative integers and two integers Q without: Does there exist $S' \leq S$ such that $\sum_{x \in S'} t = t$?
Theorem Substance is NP-complete
P: 1. Substance NP: contificate is a set $S' \leq S$ at $\sum_{x \in S'} t = t$.
 Q we show 2-SAT $\leq p$ Substance units variable $X_{11}X_{21}, yX_{12}$
We construct an instance $\langle S,t \rangle \in S$ substance units variable $X_{11}X_{21}, yX_{12}$
 f is so highlight $\leq 2 \langle S,t \rangle \in S$ substance $(\exists S' \leq S: \forall Z \neq t)$
Consider numbers ben to and set $t = 11 - 144 - 144$
 $Y_{12} = 0 - 010 - 00 - 11 - 100$
 $Y_{12} = 0 - 010 - 00 - 11 - 100$
 $Y_{13} = 00 - 00 - 00 - 00 - 000$
 $S'_{1} = 00 - 00 - 00 - 00 - 000 - 000$
 $S'_{1} = 00 - 00 - 00 - 000 - 000 - 000$
 $S'_{1} = 00 - 00 - 00 - 000 - 000 - 000$
 $S'_{1} = 00 - 00 - 00 - 0$

 $\mathcal{E} \times \operatorname{comple} = (X_1 \vee \overline{X_1} \vee X_3) \wedge (\overline{X_1} \vee X_2 \vee \overline{X_3}) \wedge (X_1 \vee \overline{X_2} \vee \overline{X_3}) \wedge (\overline{X_1} \vee X_2 \vee \overline{X_3})$

 $C_1 C_2 C_3 C_4$ X, e Xet $\mathbb{O} \leftarrow X_{1} \leftarrow \mathbb{F}$ 0 < X3 < F (\mathbf{I}) Clarin Fissatisfiable => LS, t> E Subnt-sum => For iEEnD: if X:= Tadd vitos' etmadd vitos' For je[m) if Cjhas I true bhowl add s, s; to S' if Cjha, 2 true literals ald s' to S! if Cj has 3 true literals add s, tos' SES satisfier ZX=t 4 a grown XES Set XitTif vies XieFif J'ES I his is a satisfying Ereth a Dishmut since we must have at least one I in uppu part of column

C

TSP input: A complete graph
$$K_n$$
 and $w: E(k_n) \rightarrow nen nession
and an integer K
Question: Does then exist a Hamilton cycle of weight $\leq K$?
Theorem TSP is NP-complete
1. TSP \in NP
Certificate is a permetation of the vertice
Certificate is a permetation of the vertice of the vertic$