More NP-complete problems from Sipro 7.5 and Dorm 34.5
$3 \cdot S A T \leq p$ Vertox.cover
We have already seen that $3-S A T \leq p$ clique $\leq p$ Independent \leq Vetex-coves Here we give a direct reduction from 3-SAT to Vartex-cover
Given an instance $f=C_{1} \wedge C_{2} \cap \ldots \wedge C_{m}$ of $3-S A T$ with variables $x_{1}, x_{2}, \ldots, x_{n}$

- Let $K=n+2 m$ and construct a graph $G=G(f)$ with $2 n+3 m$ verticu - Each variable x_{i} is represented. by $0=\frac{0}{V_{i}}$ in 6
- Each clan C_{j} is represented by $\xrightarrow[i]{0 \rightarrow} \mathrm{z}_{j} \longrightarrow$ in 6
- Connections between these in 6 : support $C_{1}=\left(x_{1} \vee \bar{x}_{3} \vee x_{5}\right)$, then
do this for each clan

Example $f=\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\bar{x}_{1} \vee x_{2} \vee \bar{x}_{3}\right) \wedge\left(x_{1} \vee \bar{x}_{2} \vee \bar{x}_{3}\right)$

$G(f)$

$$
x_{1} \quad \overline{x_{2}} \quad x_{3} \quad \bar{x}_{1} \quad x_{2} \quad \bar{x}_{3} \quad x_{1} \quad \overline{x_{2}} \quad \overline{x_{3}}
$$

Claim $\pi_{\pi} G(f)$ has a $V C$ of size $n+2 m$ f is satisfiable
Easy: Every vertex cover has size at least $n+2 m$ (2 pr clan triangle $0 / Z_{j}^{0}$ and 1 pr variashedge $\left.\begin{array}{cc}v_{i} & \overline{v_{i}} \\ 0 & 0\end{array}\right)$

介 soppon f is satisfied by the truth asoisnment $\left.t: 3 x_{1, \ldots}, x_{n}\right\} \rightarrow\left\{T_{1} F\right\}^{n}$ construct $U \leq V(G)$ by adding v_{i} to U if $t\left(x_{i}\right)=T$
adding \bar{v}_{j} to U if $t\left(x_{i}\right)=F\left(t\left(\bar{x}_{i}\right)=T\right)$
Now u covers all edges of the kind $v_{i}-\overline{v_{i}} \quad i \in[n]$

For each clan triansh Z_{j} at least one of the blue edges e leaving it is now covend by U as C_{j} is satisfied by t

Now U is vertuxcover and $|U|=n+2 m$
$\sqrt{\|}$ Suppose G has s $V C X$ set $|X|=n+2 m$
Then $\left.\mid X n\} v_{i}, \bar{v}_{i}\right\rangle \mid=1$ for $i \in[n]$
and X has exactly 2 vertices from Z_{j} for $j \in[m]$
Set $\varphi\left(x_{i}\right)=T \quad$ ff $\quad v_{i} \in X \quad i \in[n]$
Then φ is a satisfying truth assignment, that is, each Clan C_{j} has at least one true literal:

$G(f)$

$$
\begin{array}{lllllllll}
x_{1} & \bar{x}_{2} & x_{3} & \bar{x}_{1} & x_{2} & \bar{x}_{3} & x_{1} & \bar{x}_{2} & \bar{x}_{3}
\end{array}
$$

Subset-sum:
input: $\langle S, t\rangle$ when S is and of non-negative integers and $t \geq 0$ is anintegs
Question: Does then exist $S^{\prime} \leq S$ such that $\sum_{x \in S^{\prime}} x=t$?
Theorem subnt-sum is NP-complite
P: 1. Subnt-sum $\in \mathbb{N} P$: certificate is ant $S^{\prime} \subseteq S$. set $\sum_{x \in S^{\prime}}^{x}=t$ 2. We show $3-S A T \leqslant p$ Sudnt-sum

Let $f=C_{1} a C_{2} n . . \wedge C_{m}$ dea 3 -SAT instance with variabhs $x_{1}, x_{2}, \ldots, x_{n}$ We construct an instanu $\langle S, t\rangle$ of Subat-som such that

Consider numbers dan 10 cme rot $t=\overbrace{11-1}^{n} \overbrace{44 \cdots \cdot 4}^{m}$ Each variable x_{i} of f is reprenatid by v_{i} wot

$$
v_{i}=0 \ldots 010 \cdots 0 \ldots 101 \text { in pos j' } v_{c}^{\prime}=0 \cdots \bar{x}_{i} \text { htemlot } C_{j}
$$

Each clan C_{j} is reprematid by S_{j}, S_{j}^{\prime} when

$$
\begin{aligned}
& S_{j}=00 \ldots 00 \cdot c_{j} \cdot 010 \cdots 0 \\
& S_{j}^{\prime}=00 \ldots 00 \cdots 020 \cdots 0
\end{aligned}
$$

idea: Vicar make a 4 in column j if and only if at hast one of the now corresponding to the literal, in C_{j} is in S^{l}

Example $f=\left(x_{1} v \bar{x}_{2} v x_{3}\right) \wedge\left(\bar{x}_{1} v x_{2} v \bar{x}_{3}\right) \wedge\left(x_{1} v \bar{x}_{2} v \bar{x}_{3}\right) \wedge\left(\bar{x}_{1} v x_{2} v \bar{x}_{3}\right)$

Claim f is satistiodle $\Leftrightarrow\langle S, t\rangle \in$ Subnt-sum

$$
\begin{aligned}
& \text { Claim } f \text { is satisfiable } \Leftrightarrow \text { For } i \in\left[m \text { : if } x_{i}=T \text { add } v_{i} \text { to } S^{\prime} \text { eld add } v_{i}^{\prime} \text { to } s^{\prime}\right. \\
& \Rightarrow \text { Fruhturl add } s_{j l} s_{j}^{\prime} \text { to } s^{\prime}
\end{aligned}
$$

For $j \in[m]$ if C_{j} has 1 trumhtaril add s_{j}, j_{j}^{1} to s^{\prime}
if C_{j} has 2 true litemis ald s_{j}^{\prime} to S^{\prime}
if C_{j} has 3 true litemb add s_{j} to ${ }^{\prime}$
\Leftarrow a dome $S^{\prime} \leq S$ satisfies $\sum_{x \in S^{\prime}} x=t$
set $x_{i} \in T$ if $v_{i} \in \delta^{\prime}$

$$
\begin{aligned}
& x_{i} \Leftarrow 1 \quad i+v_{i}^{\prime} \\
& x_{i} \Leftarrow F \text { if } v_{i}^{\prime} \in S^{\prime}
\end{aligned}
$$

This is a satisfyrus teth a ojisument since we mast have at least one 1 in upper part of column for $C_{j} \quad \square$.

Hami Itoncych
inpot: a graph $G=(V, E)$
Question: does 6 have a ych C with $V(C)=V$?
Theorem Ham, Iton mch is NPC
proot 1. Hameltoncych $\in \boldsymbol{N P}$: certificatc is a permutation

$$
\begin{aligned}
& \text { Hamaltoncych } \in \mathbb{N} \boldsymbol{P}: \text { certificat } i \text { a permer and } v_{1} v_{n} \in E \\
& v_{11}, v_{2}, \ldots v_{n} \text { s,t } v_{i} v_{i+1} \in E \text { for } i=1,2 \ldots n-1 \text { and }
\end{aligned}
$$

2. Vertex-wivel $\leq p$ Hamilton cych
W will un the following so-called galget W

exactly 2 ways to travernall 12 vertius of w

Let $\langle G, k\rangle$ be an inutana of vertex-cover where $G=(V, E)$

- For eachedge uveE take a copy $W_{u v}$ of W
- Fix an ordenhg of the neighbou"s around each vertex $u \in V$

For all $u \in$ connect $W_{u u^{\prime}}, W_{u u^{2}}, \ldots, W_{u u^{d}(u)}$ as follows.

S is a fixul ret of $l e$ vertices some for all u

Note that $W_{u u i}=W_{u i u}$ so it appears in the chain for u and in the chain for u^{i}
Claim rezulhus graph G^{\prime} has a hamilton ayah ξ G has a vertex cover of size k

to the $V C \quad\{2,3\}$ in 6 .
suppon $U=\left\{u_{1}, u_{2}, \ldots u_{k}\right\}$ is a vertex cover in 6 Let $C=s_{1} P_{1} s_{2} P_{2} \cdots s_{k-1} P_{k-1} s_{k} P_{k} s_{1}$ be the cych we obtain a) indicated in the examphabove, that is
P_{i} traverses the gadget) $W_{u_{i} v_{i}^{\prime},}, W_{u_{i} v_{i}^{2} \ldots} W_{u_{i} v_{i}^{d}}{ }^{d}\left(u_{i}\right)$ in that order and inside $W_{u_{i} v i} P_{i}$ uns all vertius if $v_{i}^{j} \notin U$ and othewin $P_{i} u n$, only om sid of $W_{u_{i} v_{i}}$

Suppon now that G^{\prime} has a Hamilton asch (The nt s has no edges so C is ot the form

$$
s_{i_{1}} Q_{i_{1}} s_{i_{2}} Q_{i_{2}} \ldots s_{i_{k}} Q_{i_{6}} s_{i_{1}}
$$

- C picks up all vertus inside each W WV
- Wuv is only conmetull to other $W_{u v}{ }^{\prime}$ or $W_{u^{\prime} v}$ via the edges of the chain corvespongens to the meishboors of either u or V
- So each $Q_{i j} \leftrightarrow$ chain for some vertex u_{j}
- By symmetry we can ajoume that $Q_{i j}$ starts at the first of the W's for u_{i} and ends at the last one
- $\left\{u_{1}, u_{2} \ldots u_{n}\right\}$ is a mirtexcover of G

ISP input: A comphitegraph k_{n} and $\omega: E\left(k_{n}\right) \rightarrow$ non negative integers and an integer K
Question: Does then exist a Hamilton cych of weight $\leq K$?

Theorem TSP is NP-complite
poof

1. TSP $\in \mathbb{N} P$

Certificate is a permutation of the vortios corvespundins to a Hamilton cych of wert $\leq K$
2. Hamiltoncych $\leq_{p} T S P$

G

G han a Hamill to n eyck

$$
K=0
$$

\overparen{W}
3 Hamilton wy ch of wight o

$$
\operatorname{in}\left(K_{n}, w\right)
$$

