Sipser section $7 . Y$ Cook-Lewin theorem
Theorem 7.37 SAT is NP-complit
proof: We have argued that SAT ENP: the certificate is a satistyins troth assisnment.
Recall: $N P=\{L \mid L$ is decided by some NDTM in pol time $\}$
WC ned to show $A \leq p S A T$ for every $A \in N P$
Let $A \in N P$ and let N dea NDTM that decide A in time n^{k} minus a constant, when n is the sizeot the input A tableau for N on the string ω is an $n^{k} \times n^{k}$ table showing N^{\prime} 's tape in step) $1,2, \ldots n^{k}$ for one particular branch of N^{\prime} s compotation on ω

start configuration second contipuration third starts and ends with a ' $\#$ ' $n^{k} \in h$ configuration

We call a tad eau accepting if at least one of its row correspond e to an accepting contiguntion of N on w

Note that if row ic correspond o to an acciaphins configuration, then row $j=$ now i forall $j \geq i$ on the tableau.
Evens accepting confisomition of Non w corresponds to an accepting computation branch for Non
Hence: N accepts $\omega \Leftrightarrow \exists$ an accepting tableau for Non our goal: construct a SAT formula φ from N and ω such that φ is satisfiable $\Leftrightarrow \exists$ an accepting tableau for Noun

- Let N havestateset Q, tape alphabet Γ set $C=Q u \Gamma u\{\#\}$
- will have variadks $X_{i, j, s}$, when $\left.i, j \in\left[n^{k}\right]=41,1^{2} \ldots n^{k}\right\}$ and $s \in C$
- Each of the $n^{k} \cdot n^{k}=n^{2 k}$ entries of a tableau is called a cell and cell $[i, j]$ denotes the content of the $(i, j)^{t h}$ cull so cell $[i, j] \in C$
- The varialles $x_{i, j, s}$ will indicate the content of cells:

$$
\operatorname{cell}[i, j]=s \Leftrightarrow x_{i, j, s}=1 \text { and } x_{i, j, t}=0 \quad \forall t \in C \text { s.t } \in \neq s
$$

The formula Q consists of 4 susformulas

$$
\varphi=\varphi_{\text {cell }} \text { a } \varphi_{\text {start }} a \varphi_{m o v e} a \varphi_{\text {accept }}
$$

Quell: Express that atanytim, each cell has precionly one symbol from C

$$
\bigoplus_{\text {cell }}=\bigwedge_{i, j \in\left[n^{k}\right]}\left[V_{s \in C} X_{i, j, s} \wedge\left(\prod_{\substack{s, t \in C \\ s \neq t}}\left(\bar{X}_{i, j, s} v \bar{X}_{i, j, t}\right)\right)\right]
$$

$Q_{\text {start: Express }}$ that N starts in the configuration $q_{0} \omega$

$$
\begin{aligned}
\varphi_{\text {start }}= & x_{1,1, \# n} x_{1,2, q_{0}} n x_{1,3, \omega,} \wedge \ldots \wedge x_{1, n+2, \omega_{n}} n \\
& x_{1, n+3, v} \wedge \ldots . \wedge x_{1, n^{k}-1, \cup} \wedge x_{1, n^{k}} \neq \#
\end{aligned}
$$

Qaccent: Expresses that at least on row of the tableau contains an accepting configuration for N on w

$$
\varphi_{\text {accept }}=\bigvee_{i, j \in\left[n^{k}\right]} x_{i, j, q_{\text {accept }}}
$$

move: should express that the rows of the tadkan chang according to N 's transition table
More complicated!!
We must enson that from on wow in the tabla to the next the cells can only change according to what N can do in one oleo.
E.S if reading head is more than on cell away from a given cell, then this cell is unchanged in the next iteration.

Solution: un 2×3 window, window below

A window is legal if the 3 bottom cell) may result from the 3 top cells in one step of N

NB: we do not give a complete description of legal windows, but you should be able to argue whet the a given wallow is legal, basal on N's transition tabla.
(i) (ii)
(iii)

Examph suppon $\delta\left(q_{1}, q\right)=\left\{\left(q_{2}, \delta, R\right)\right\}$ and $\left(q_{2}, c, l\right),\left(q_{1}, q, R\right) \in \delta\left(q_{21}, \delta\right)$

legal \quad| q_{1} | a | c |
| :--- | :--- | :--- |
| b | q_{2} | c |

| (ii) | |
| :--- | :--- | :--- |
| q_{2} b
 q_{2} a $c$$\quad$$a$ q_{2} b
 a a q_{1} | |

not legal | a | b | a |
| :--- | :--- | :---: |
| a | a | a |

a	b	q_{1}
a	b	b

Claim 7.4.1
If row $1 \sim$ start configuration of Non w and every window of the tableavis legal, then each now of the tableau ~ contis that legally follows the preccecsor of that wow.
prot: Consider two conncutive rows j and $j+l$ called upper and lower confisomtion

- In upper evens cell ii containing a tapesyenbol x and which is not adjacent to a state symbol has a wind dow i

- if upper $=\# \ldots$. aqs.... then the window | a | 7 |
| :--- | :--- | mimics what N will do so if upper confis is legal then so is the lower contisumtion
- Byinduction and the fact that the first row is the star hus configoution of Non w, the wows in the tableau corresponds to conn untie contigumtions of Now \square.

Construction of $\varphi_{\text {move }}$ The formula needs to correspond to all windows of the tableau an legal
informally:

$$
\varphi_{\text {move }}=\prod^{i \in\left[n^{h}\right]}(t \operatorname{th}(i, j) \text {-window is k legal) }
$$

when $\left(i, j\right.$-window $=\begin{array}{c}i \\ \hline\end{array} \square \square$

Not a SAT formula
But we can formulate that a window is usa using
G voniablis

a_{1}	a_{2}	a_{3}
a_{4}	a_{5}	a_{6}

$\widehat{(i, j)-w i n d o w ~ i) ~ l e g a l ~}$
\hat{v}

$$
V /\left(x_{i, j)-1, a_{1}} \wedge x_{i, j, a_{2}} \wedge x_{i, j+1,} a_{3} \wedge x_{i+1, j-1, a_{9} \wedge} x_{i+1, j, a_{5}} \wedge x_{i+1, j+1, a_{6}}\right)
$$

a_{1}, a_{21}, a_{3}
a_{4}, a_{5}, a_{c}
For a legal combo $a_{1} \ldots a_{b} \in C$ so at most
$\operatorname{LCl}^{6} \operatorname{leg} a l$ womgow $\quad(\operatorname{tar} \operatorname{los})$

We have shown

$$
\varphi=\varphi_{\text {cull }} n \varphi_{\text {start }} \wedge \varphi_{\text {move }} \wedge \varphi_{\text {accept }} \text { is satisfishl }
$$

N accepts $\omega \Leftrightarrow \omega \in A$
Remains to prove that given N, w we can construct φ is polynomial time i $|N|+|w|$
Note that for fixed $A \in N P, N$ is also fixul ∞ IN L is a constant

- \#variabs in φ is $n^{2 k} *|c| \in O\left(n^{2 k}\right)$
- $\left|\varphi_{\text {start }}\right| \in O\left(n^{k}\right)$
- $\left|\varphi_{\text {acupt }}\right| \in O\left(n^{2 k}\right)$
- Mall $\mid \in O\left(n^{2 h}\right)$ as $|C|$ is a constant
- L mover is $O\left(n^{2 k}\right)$ as \# legal comdows only demand on N's transition talk
we isnonda factor $O(\log n)$ to handle indus,
So

$$
|\varphi| \in O\left(n^{2 k} \log n\right) \text { which is }
$$

polynomial in $|\omega|$
We have show that $A \leq p S T$ and $A \in N P$ was arbitram so SATENPC

