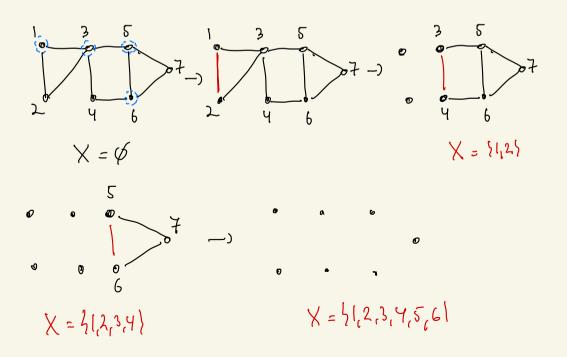
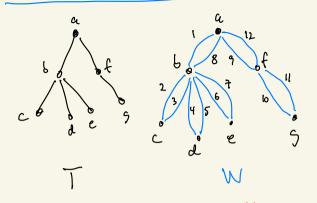
Approximation Algorithmy (Corman 35)





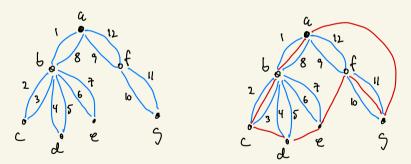
TSP with A-inequality A TSP instance (Kn, c) satisfies the  $C_{ij} \leq C_{ik} + C_{kj}$   $\forall c_{ij} \in V(k_n)$ A- inequality if Ciu Idea: Finda minimum spanning tree T\* of (kn,c) and un this to construct a hamilturght the set  $\frac{c(H)}{c(H^X)} \leq 2$ When Hx is an optimal (mir cost) TSP tour  $C(T^{*}) \leq C(H^{*})$ Obravation 1 . recall that Cij≥o ∀ij recall that Cij≥o Vuj
 recall that Cij≥o Vuj
 If we delete an edge of H\* we set a Shanning tree T'of K, so c(T)≥ C["] H<sup>e</sup>.e Spanning Ere Totky So • Hunce  $C(H^*) \ge C(T^1) \ge C(T^*)$ Д,

Double walk of a spanning free:



C(W) = 2·C(T) w = abcbdbebafgfa

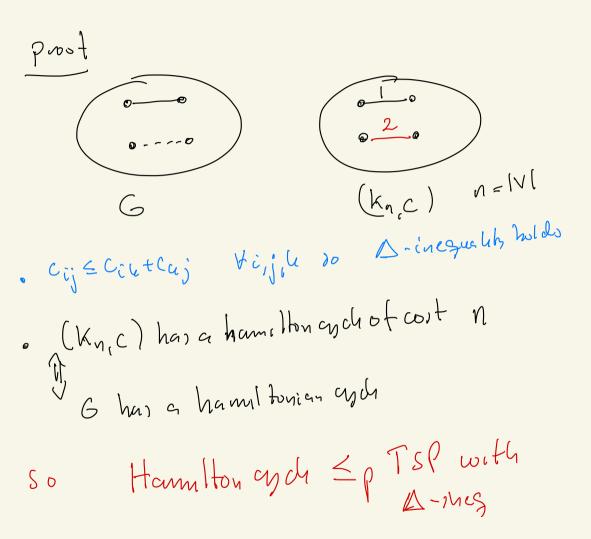
Shortcutting a double walk: Keep only first occurre of an internal vertex on walk W = abcbdbebafgfa -> abcbdbebafgfa = abcdefga



H is a hamilton eych and  $\frac{Obnvahor 2}{T (u's follows from the Ariseques (ity)}$   $\frac{P_{1}}{P_{2}} = c(P_{1}) \ge c(P_{2}) \ge c(P_{3}) \ge c(P_{3}$ 

A: Impot 
$$(k_{n,c})$$
  
output H with  $c(H) \leq 2c(H^{*})$   
1. Construct a minimum spanning tree  $T^{*}$   
2. Form the double walk W of  $T^{*}$   
3. Shortcut W to g ham therefore H  
9. Return H  
0 Source hor  
 $c(H) \leq c(W) = 2c(T^{*}) \leq 2c(H^{*})$   
So  $\frac{c(H)}{c(H^{*})} \leq 2$ 

Theorem TSP is NPC were if impot costs satisfy the A-inequality



Did we really need the A-inequality?  
Theorem Unless P=NP then is no g(n)-approximation  
alsorthum for general TSP (no assumptions or costs)  
for any function g(n)  
Proof: suppor C is a polynomial alsorthum which simm  
(Knic) with cijzo Viji finds a hamilton cych H  
s.t 
$$\frac{c(H)}{c(H^{p})} \leq g(n)$$
.  
let G be an instance of Hermilton cycle and define (Knic)  
with n = [V(G)]:  
G or o for one finds on the cost one blue cost  
has cost at least (n-1) + g(n) + n = g(n) + 1) + n = g(n) - n = g(n) = g(n) - n =

C