How can we prove that a language is not regular? $L_1 = \frac{1}{2} w \in \mathbb{Z}^* | \omega| = 273$ $L_2 = \frac{1}{2} \omega \in \mathbb{Z}^* | [\omega] > 27 \frac{1}{2}$ $L_3 = \int a^n b^n | n \ge 0 \\ \Big\}$ $L_{y} = \frac{1}{2} q^{\alpha} \delta^{\gamma} \left[\alpha \geq 28 \right]$ $L_{5} = \frac{1}{2} \omega \in \left\{ o_{1} \left(\frac{1}{2} \right)^{*} \left(\frac{1}{4} \left(\omega \right) \in \frac{1}{4} \right) \right\}$ $L_{6} = 4 \omega \in 40, 14^{*} [\#_{01}(\omega) = \#_{10}(\omega)]$

NB: Every first languan is regular? $L = \frac{1}{2} \omega_1 (\omega_2) - - (\omega_k) + \frac{1}{2} \omega_k + \frac{1}{2} \omega_k$ >0 - Wi & E accept only w M, Mi>O Wi O & accept of wi

 \square

How to un the pomping Cemma to Show that a language Lis not regular: Note that L must be infinite and hence contain arbitrarily long struss as otherwise it is regular Proof by contraction (seen as a game against an adversary) · Suppon L is regular (8) . Then LoL(M) for some DFAM let p be #states in M · We choon a strug SEL with ISIZP (designed to get a contradiction) · The adversary sives a partion s=xyz sahistying 2. and 3. in Theorem 1.70 . We find a value à s.t. l. dois not hold -> contracting (\$)

Example 1.73

$$B = \frac{1}{3} O^{n} [^{n}] n \ge 0]$$

Suppon B is resular. Let M
be a DFA with L(M)=B and let p
be # states of M.
We choon $s = O^{P}P$
The adversary proportion partition
 $s = xy \ge satisfying 2.$ and b.
 $bbat is, 19170 \text{ cml } 1xy1 \le P$
• As $1xy1 \le p$ we must have $y = 0^{-1}$
Now $x \ge 0^{P-r} P \notin B$
contradictors 1. of Then 1.70
Conclusion: B is not regular

Recall the languages L3 and Ly:

$$L_{3} = \frac{1}{2}a^{n}b^{n} | n \ge 0$$

$$L_{4} = \frac{1}{2}a^{n}b^{n} | n \ge 282$$

$$L_{3} is the same as B if we do

0 -2a, 1-2b

So same proof shows that L3 is

not resular

$$L_{4} = L_{3} \cap L_{2} \quad (L_{2} = \frac{1}{2}webars)^{n} |w| > 272$$
Can we conclude anything about Ly
from that?$$

Q

Example 1.74 $C = \int w e \int 0, 1 \int * [\#_0(w)] = \#_0(w) \int$ Suppon C is resular and let Mbe a DFA with L(M)=C and let p=#utatoof M $wc choon S = O^{P_{1}P}$ · The adversary proposes a partition S = ×yZ satisfairs 2. and 3. that is, ly 170 and 1xy15p • As Ixy1 = p we must have y= of for some 120. Now XZ= OP-rip & C Contradictions 1. of Thm 1.70

 $S = O^{P+2} | P \in E$ $S = X Y 2 \qquad X = O^{0} Y = O^{1} 2 = O^{P+1} | P$ $X 2 = O^{P+1} | P \in E$ $X y^{2} = O^{P+1+1} | P \in E$

Example not from book: L= hon In isa prime) Suppon Misa DFA with pstates s.t L(m)=L We take S= O^m where m ≥ p and missprime The adversary gives us X, Y, 260* s.t S=Xyz, IXy1≤p and 1y1=970 Note that |XY'Z| = (m-q)+iq = m+(i-i)qSo for i= m+2g+3 we set $|Xy^{\circ}z| = m + (m + 2s + 2)q$ = mt24 + (mt24)9 = (9+1)(m+29) 2 not a prime