Cormen Section 35.5
Recall Subrtsom:
Given $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $t \in \mathbb{X}_{4}$
Question \exists ? Is $h(1, \ldots, \ldots n)$ set $\sum_{i \in I} x_{i}=t$?
Optimization version: Find maximum $t^{*} \leq t$ s.t $\left.\exists I \leq 3,1,2-n\right\}$ worth

$$
\sum_{i \in I} x_{i}=t^{\hbar}
$$

Definition A polynomial apporximation scheme to a problem Q is an alsonthm $A=A(\varepsilon)$ such that A findse sow hon which is with $(1+\varepsilon)$ of opt solution:

$$
\max \left(\frac{c}{c^{x}}, \frac{c^{x}}{c}\right) \leq(1+\varepsilon)
$$

$O(\varepsilon)$ runs in time polynomial in n (size of input) but not recessavily in $\frac{1}{\varepsilon}$

$$
\text { e.s } n^{5 / \varepsilon}
$$

A folly polynomial approximation scheme is as above but $A(\varepsilon)$ is polynomial in both n and $\frac{L}{\varepsilon}$

$$
e . s\left(\frac{1}{\varepsilon}\right)^{G} n^{3}
$$

Solving Subset som in exponential time:
$S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ with $x_{1} \leq x_{2} \leq \ldots \leq x_{n}$

$$
S_{i}=\left\{x_{1}, \ldots, x_{i}\right\} \quad i=0,1,2 \ldots, n
$$

$L_{i}=$ set of integers we can form as a som of some elements from S_{j}

$$
L_{0}=0, L_{1}=\left\{0, x_{1}\right\}, L_{2}=\left\{0, x_{1}, x_{2}, x_{1}+x_{2}\right\}
$$

remove numbers $>t$ from L_{i}
$L_{i} \rightarrow L_{i t 1}$: add $x_{i t 1}$ to all number in L_{i} (removing value) $>t$)

$$
L_{0} \rightarrow L_{1} \rightarrow L_{2} \rightarrow \ldots-1 L_{i} \rightarrow L_{i+1}-1,-1 L_{n}
$$

$$
t^{*} \leftarrow \max \text { value in } L_{n}
$$

list may doubs in each step so $1 L_{u} l$ can be cepto $2^{n} \rightarrow$ algonthm is expoumtial

Examph $\delta=\{1,5,7,8\} \quad t=19$

$$
\begin{aligned}
& L_{0}=\{0\} \\
& L_{1}=\{0,13 \\
& L_{2}=\{0,1,5,6\} \\
& L_{3}=\{0,1,5,6,7,8,12,13\} \\
& L_{4}=\{0,1,5,6,7,8,9,12,13,14,15,16\}
\end{aligned}
$$

If $\left.S=31,2,4,8,16, \cdots-2^{n-1}\right\}$ and $t \geq 2^{n}$
$\left|L_{i}\right|=2\left|L_{i-1}\right| \quad$ for $i=1,2 \cdots n$ so roving time $O\left(2^{n}\right)$
Hisonthm is polynomish if either 1. Lis small asa function of

2 all $x_{i} \leq p(n)$ for some polynomial p

Idea for approximation scheme:"
δ-trimming the lists: reprepust some values dy smaller ones that is delete y if $\frac{y}{(1+\delta)} \leq z \leq y$
Examph $\delta=\frac{1}{10} \quad L=\{0,10,11,12,15,17,18,20,24, \cdots\}$

$$
\left.\operatorname{trim} L \rightarrow L^{\prime}=30,10,12,15,17,20,24, \ldots\right\}
$$

Modificu algonthm A^{\prime}
Build lists as before, except that we trim L_{i} before building $L_{i t 1}$ (from L_{i}^{l})
Theorem A^{\prime} is a fully polynomial ap x scheme for joint som when we un trim factor $\delta=\frac{\varepsilon}{2 n} \quad[0<\varepsilon<1$ is fixed $]$
Proof: We need to show that $\frac{y^{*}}{z^{*}} \leq(1+\varepsilon)$ when y^{*} is value of the optimum solution and z^{*} is output from $\mathcal{A l}^{\prime}$ (largest numbs in L_{n}^{\prime}) If we removed y from L_{j} in step j, then L_{j}^{\prime} contains a value z sot $\frac{y}{(1+\delta)} \leq z \leq y$
If z is later removed in to $j^{\prime}>j$ then z is reprenutad in $L_{j i}^{\prime}$ by some z^{\prime} with $\frac{z}{1+\delta} \leq 2^{\prime}$

$$
\begin{aligned}
& \frac{y}{1+\delta} \leq z \wedge \quad \frac{z}{1+\delta} \leq z^{1} \\
& \|^{\prime} \geq \frac{z}{1+\delta} \geq \frac{\frac{y}{1+\delta}}{1+\delta}=\frac{y}{(1+\delta)^{2}}
\end{aligned}
$$

In particular at the last iteration y^{*} is represuntal by some element $z \in L_{n}^{l}$ when

$$
\frac{y^{*}}{(1+\delta)^{n}} \leq z \leq y^{*}
$$

$z \in L_{n}^{1}$ so $z \leq z^{*}$ implying $\frac{y^{*}}{\left(|t \delta|^{n}\right.} \leq z \leq z^{*}$
so $\frac{y^{*}}{z^{*}} \leq(1+\delta)^{n}=\left(1+\frac{\varepsilon}{24}\right)^{n}$
Calculus: $\left(1+\frac{\varepsilon / 2}{n}\right)^{n} \leq e^{\varepsilon / 2}=1+\frac{\varepsilon}{2}+\left(\frac{\varepsilon}{2}\right)^{2}+\cdots \leq 1+\varepsilon$ when $0<\varepsilon<1$
Hence $\frac{y^{*}}{z^{k}} \leq(1+\varepsilon)$
$\Rightarrow A^{(}$is a $(|+\varepsilon|-\operatorname{ap} x$ alg

Running time:

$$
L_{n}^{\prime}=\left\{0,9, a_{2}, \ldots a_{r+1}\right\}
$$

- $a_{i+1}>\left(1+\frac{\varepsilon}{2 n}\right) a_{i} \quad \forall i$ as a_{i+1} was not removed
- Hence $\left(1+\frac{\varepsilon}{2 n}\right)^{r} a_{1}<a_{r+1} \leq t$

V

$$
\begin{aligned}
& r+\log _{\left(1+\frac{\varepsilon}{2 n}\right)}\left(a_{1}\right)<\log _{\left(1+\frac{\varepsilon}{4 n}\right)}(t) \\
& r \quad<\log _{\left(1+\frac{\varepsilon}{2 n}\right)}(t) \\
& =\frac{\ln t}{\ln \left(1+\frac{\varepsilon}{2 n}\right)} \quad\left(\log _{a}(x)=\frac{\ln x}{\ln a}\right)
\end{aligned}
$$

So $\left|L_{n}^{\prime}\right|=r+2<2+\frac{\ln t}{\ln \left(1+\frac{\varepsilon}{2 n}\right)}$

$$
\begin{aligned}
& <2+\frac{\ln t}{\ln \left(1+\frac{\varepsilon}{2 n}\right)} \\
& \leq 2+\frac{2 n\left(1+\frac{\varepsilon}{2 n}\right) \ln t}{\varepsilon} \\
& \leq 2+\frac{3 n \ln t}{\varepsilon} \quad\left(1+\frac{\varepsilon}{2 n}<\frac{3}{2}\right) \\
& x=\frac{\varepsilon}{2 n} \\
& =\frac{1+x}{x} \geq \frac{1}{\ln (1+x)} \\
& =3 n \cdot \frac{1}{\varepsilon} \cdot \ln t+2
\end{aligned}
$$

polynomial in $n, \frac{1}{\varepsilon}$ and $\ln t$

