over bounds for comparison based algonthms
Band on: Sara Bax, Compote Alsonthms indeed 1988 Adehon Work e Both availath form hompupen and Its learmus
What is a lowe bound $L(n)$ for a problem P ?
It is a proof that EVERY alsonthm for solving P must un at least Lir) operations (es. Comparisons))
such proofs are often phrased in terms of
an adversary who answers queries of the
alsonthm A consistently with previous answers while trons to force of to make many unless comparisons.

Example: Find maximum of n elements We ned at least n - 1 comparisons since if 2 has never been compare, it could be the largest $n-1$ comparisons suffice:

$$
\begin{aligned}
& \text { For } i \in 1 \text { ton } \\
& 1+x_{i}>m \text { then } m:=x \\
& \text { return } m
\end{aligned}
$$

We will always measure the complexity of a comparison band alsonthm in terms of the nombo of comparisons it makes when solving the instance at hand

Problem max/min: Given a set $S=\left\{x_{11} x_{2}, \ldots, x_{n}\right\}$ of n numbers
Naive algonthm:

- Find $M=\max \{x \mid x \in S\}$ in $n-1$ companions
- Find $m=\min \{x(x \in S-\{M\{ \}$ in $(n-1)-1=n-2$ comparisons
in total $2 n-3$ comparisons
Different algonthm $\left(A_{\text {max min }}\right)$
can $1 \quad n=2 k$
$\xrightarrow{\substack{x_{1} \\ x_{1}}} \begin{aligned} & x_{2} \\ & x_{3} \\ & 0 \leq\end{aligned} x_{0}$

\# comparisons:
k to construct $S_{11} S_{2}$
$k-1$ to obtain m
$k-1$ to obtain M

$$
3 k-2=\frac{3}{2} n-2
$$

$$
m:=\min \left\{x \mid x \in S_{1}\right\} \quad m:=\max \left\{x \mid x \in S_{2}\right\}
$$ return M, n

Conclusion Ajax, min finds max and min using at moot $\frac{3 n}{2}-\frac{3}{2}$ companions

Can we do outer?
No! as we con mate an adversary who forces EVERY algonthm that find, min and max to un at least $\frac{3 n}{2}-\frac{3}{2}$ comparisons

Adversary anowers all comparison queries of A consistently with previous answers and forces A to make many redundant pieces of information

Obravations. Let At an arbitrary algonthen for finding min and max using only companions and let m, M bethe min and max elements in the ingot S

- Then M is larger than all other elements so $f(h a)$ collected a least $n-1$ pieces of information: showing that m is the maximum by ruling out each of the other elements via a lost companion
- Similarly, to obtain m. A must collect at last $n-1$ pieces of information: showins that m IS the minimum, that is all other elements won at hast one comparison
- In total A must collect at least 2n-2picus of information to find M and m
How many times can A collect 2 pieces of info in one comparison?
Only when comparing two elements x and y such that detor this comparison they are both candidate y for being both max and win. So at most $\left\lfloor\frac{n}{2}\right\rfloor$ times during the ron of A

Adversary statesy when A coasts to compar x and y
notation $a \longrightarrow . b \Leftrightarrow a<b$ (assume numbusin Sore distinct)

$\because \because: Z$ has lost all comparisons so far
$\xrightarrow[z]{\infty}, \cdots$ has won all companions jo far
\rightarrow : \rightarrow : Z has loot and coon at hast one comparison do far
answer to $a<b$?
\# pious of in to obtained by A
status) of a, s
answer

$$
\begin{aligned}
& 2 \\
& 2
\end{aligned}
$$

$$
\begin{aligned}
& a<b \\
& b<a
\end{aligned}
$$

0
$a<b$ or $b<a$
so that consistency
is maintain!

Conclusion A can only obtain 2 pieces ot info in the first can which can happen at moot $\left\lfloor\frac{n}{2}\right\rfloor$ time so A can collect at most n pieces of info in $\left\lfloor\frac{n}{2}\right\rfloor$ such comparisons.
Then remains $2 n-2-2\left[\frac{n}{2}\right\rfloor \geqq n-2$ piece of information to collect
Each requires at least one extra comparison Hence when n iseven At must make at least

$$
\frac{n}{2}+n-2=\frac{3 n}{2}-2 \text { comparisons }
$$

and when $n=2 l t 1$ isodd A can make at most $\left\lfloor\frac{n}{2}\right\rfloor=k$ comparisons which give 2 pious of into so there remains at least $2 n-2-2 h=2(2 h+1)-2-2 h=2 h$ pies of info to collect, each vequivering a new compassion.

Hence whir $n=2 k+1$ A must make at least

$$
k+2 h=3 k=3\left(\frac{n-1}{2}\right)=\frac{3 n}{2}-\frac{3}{2} \text { companions }
$$

How can the adversary answer consistently when both a and δ have loot and won at least one comparison?
Answer: it uni acyclic orderings of partially oriented complete graphs

- At digraph $D=(V, A)$ is acyclic if D contains no directed yah
- A digraph is acyclic if and only if its vertices have an acyclic order $v_{1} v_{2}, \ldots v_{n}$
such that $v_{i}-, v_{j} \in A \Rightarrow i<j$
\longrightarrow all arcs forward
$\begin{array}{llllll}0 & 0 & 0 & \cdots & \cdots \\ 1 & 2 & & & \cdots\end{array}$
- A tournament is an orientation of a complete graph k_{n}

Then is exactly one acyclic
 tournament on n vertices

Lemma if $D=(V, A)$ is acydic and $n=|V|$, then we can add a sotot arc) A^{\prime} s.t. $D+A^{\prime}$ is the transitive tournament T_{n}

- The adversary orients edges of k_{n} whale anjwesins the queries of St. Let D be the currant oriented part
- The adveriang can un the final acyclic digraph and an acydic ordering of $V(D)$ to produce a n input to ot which is consistent with call answers given by the actuersary
- We may chon this input as some permutation of $\{\{, 2 \ldots n\}$ determined by an acyclic ordering of the final D

Using acydic orderingo to answar quevies:
llhestatid on max and win poilem

$$
\therefore \quad \begin{array}{ccccc}
& \sim & 0 & \text { current } \\
a & b & & \text { acschic ordenhs }
\end{array}
$$

- initially noedx an orientid
- when a and b are compand the adversary chacks the otatus (., $\left.\xrightarrow[\rightarrow]{\rightarrow}, \stackrel{L}{\leftarrow},>_{0} x\right)$ of a and b and anjwers as we showed when $\underset{0}{ } \rightarrow{ }_{j} \rightarrow$ it alsochecks whether ther is a cirectel path from a to d in D. If ye), (t anjwer) $a<b$ othwwin it amswers $b<a$

Problem: minimum and and smallest element amos n noundw

Naive alsonthon:

1. Find $m=\min \{x \mid x \in S\} \quad n-1$ companions
2. $S^{\prime} \in S-\{m)$
3. Find $m^{\prime}=\min \left\{x \mid x \in S^{\prime}\right\} \quad n-2$ companions

Total $2 n-3$ comparisons
Tournament method: assume $n=2^{k}$ forsomi k

©

(3)

R minimum
When is second omakot?
Only candidates are tho that ware compand (and won) to min.
One for cash level so $h=\log _{2} n$ candidate, $\left(n=2^{k}\right)$
$\log _{2} 4$ candidate, for 2 min

- $n-1$ companions to set min and collect $\log _{2} 4$ candidates for 2 mm
- $\log _{2} n-1$ comparisons to get 2 mm

Total $n+\log _{2} n-2$ companions
Can cue do better?
No.
Adversary want, to maintain a many candidates for guns as poosith while answering the queries of A constantly

Notation:
x, y means adverrang ha, answered that $x<y$
\longrightarrow, the arc is use foll tor diteming min
the are provichs no new into on min dat poosisly wantull for finding 2 umn

How adverser should answer query (x, y) : (adding $x-y y$ means also answer $x<y$)

1. If $d_{D}^{-}(x)=d_{D}^{-}(y)=0$ (x and y are rootsot blue oot-tres)
then if $\left|T^{+}(x)\right| \geq\left|T^{+}(y)\right|$ add a blue are $x \rightarrow y$
otherwin add $y \rightarrow x$
2. If $d_{D}^{-}(x)=0<d_{D}^{-}(y)$ add $x \rightarrow y$
3. If $d_{D}^{-}(y)=0<d_{D}(x)$ add $y \rightarrow x$
4. if $d_{D}^{-}(x), d_{D}(y)>0$ and no (y, x)-path in D add $x \rightarrow y$ ain add $y \rightarrow x \longrightarrow$

Example of rel 1:

Examph of rel 4:

Invariant: " the digraph D consisting of the oriented edges is always acyclic.

- The she ares form a forest of out-trees rooted at vemcining candidates for being win
- When the alsonthm terminates then is just one she tree containing all vertius and its root is the minimum

- $|S| \geq \log _{2} n$ dy mule (sire of now blue true is at most twiccas lark as larpit of the two
- At nuedsat least $\mid S 1-1 \geq \log _{2} n-1$ Comparison) corresponding to red arcs to determion 2 min

Conclusion The adversary forces At to make at least $n-1$ companions (blu ears) to fond win and at least $\log _{2} n-1$ other comparisons (red arcs) to determine 2 min
so A uniat lust $n-1+\log _{2} n-1=n+\log _{2} n-2$ comparisons

