We will always measure the complexity of a comparison band algorithm in terms of the number of comparisons it makes when solving the instance at band

Different alsorthim (Amax, min)

can
$$1$$
 $n = 2/k$
 x_1 x_2
 x_3 x_4 x_5 compare
 k smallest x_1 x_2
 K_1 K_2
 K_2
 K_1 K_2
 K_2
 K_1 K_2
 K_2

comparisons:

$$k$$
 to construct $S_{11}S_{2}$
 $k-1$ to obtain M
 $k-1$ to obtain M
 $3k-2 = \frac{3}{2}n-2$

can
$$L$$
 $N = \lambda k - 1$
• X_{2k-1}
 $k_{1} = \lambda k_{2k-2}$
 $k_{2k-2} = \lambda k_{2k-2}$
 $k_{1} = M_{1} + \lambda k_{2k-2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{1}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{1} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{1} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + \lambda k_{2} + k \leq s_{2}$
 $M := M_{2} + \lambda k_{2} + \lambda$

$$\begin{array}{r}
\# \operatorname{company}_{jon} \\
k-1 \quad \text{to obtain } S_{1}, S_{2} \\
k-2 \quad \text{to obtain } m \\
k-2 \quad \text{to obtain } m \\
+ 1 \text{ or } 2 \quad \text{to obtain } M \\
+ 1 \text{ or } 2 \quad \text{to adjust } \operatorname{via} X_{2k-1} \\
\end{array}$$

$$\begin{array}{r}
= \frac{3n}{2} - \frac{3}{2} \\
= \frac{3n}{2} - \frac{3}{2}
\end{array}$$

No! as we can make an adversary who forces EVERY algorithm that finds min and max to un at least $\frac{39}{2} - \frac{3}{2}$ comparisons

Adversary statesy cohen A counts to compare x andy

Notation Z was not in a companion yet 's . Z has lost all companisons so far Z has woon all companisons so for Companison do for answer to acb? H pieces of into obtained by A andwer statu, of a,d a < b 2 b<a t in it of it to k alb [-) a or how or have act 0 or (-coase or jash or jasy a >0 o or l a x x acbor bea \bigcirc so that consistency is maintaind!

Conclusion A can only obtain 2 pieces of into
In the first can which can happen at most
$$\lfloor \frac{n}{2} \rfloor$$
 time
so A can collect at most n pieces of into in $\lfloor \frac{n}{2} \rfloor$
Such comparisons.
Then remains $2n-2\cdot 2\lfloor \frac{n}{2} \rfloor \ge n-2$ pieces of into mathing
to collect
Each requires at least one extra comparison
Hunce when n is were A neurit make at least
 $\frac{n}{2} + n-2 = \frac{3n}{2} - 2$ comparison
at most $\lfloor \frac{n}{2} \rfloor = k$ comparisons which give 2 pieces of which
so there remains at least $2n-2-\lambda k = 2(2k+1)-2-2k = 2l$
pieces of into the collect, each required a new comparison.
Hunce when $n = 2k+1$ is a comparison which give 2 pieces of into
 $n = 2k+1$ is a comparison which give 2 pieces of which
 $n = 2k+1$ A must make at least
 $k = 3k = 3(\frac{n-1}{2}) = \frac{3n}{2} - \frac{3}{2}$ comparison

How can the adversary answer consistently
when both a and b have bot and coor
at least one comparison?
Answer: it was acyclic ordenings of parkelly
oriented complete graphs
A digraph
$$D=(V,A)$$
 is acyclic if D contains
no directed yell P
A digraph is acyclic if and only if its
vertices have an acyclic order $U_{i}U_{i}$, ... U_{i}
such that $U_{i}-nU_{j} \in A \Rightarrow i < j$
A boomament is an orientation of a complete
graph K_{i} Then is exactly one acyclic
toorput on a vertice
 $M = \frac{1}{2}$

The adversary orients edses of Kn while answering the queries of A. Let D be the corrent oriented part
The adversary can un the final acyclic dismphil and an audicordums of V(D) to produce an import
To A which is consistent with all answers given by the adversary

Using acyclic ordenings to answer queries: Illustratid on max and min problem Current acescia ordenus - - o - - O 6 Q С initially no edge, an oriented when a and b are compared the adversary chuck, the status (·, 2, , E, Sor) of a and b and answer as we showed when it also chucks whith the is a directed path from a to b in D. If yes, it answers a <b othown it consums bea

Problem: minimum and 2nd smallest element amons n numbers

Tournament method: assume $n = 2^k$ for some k

When is second smallest? Only condidates are than that were compared land woon) to min. One for each level so $k = \log_2 n$ condidates ($n=2^k$)

