Lower bound for selection(Median)

Selection prodem
Input $S=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ a ret of a distant number and $k \in\{1,2, \ldots, n\}$
Ootpot: the k'thelement that is $y \in S$ s.t

$$
\left|\left\{i \in[n] \mid x_{i} \leq y\right\}\right|=k
$$

Easy if we sort first:

$$
S \xrightarrow{\text { sort }} x_{i_{1}}<x_{i_{2}}<\cdots<x_{i_{L}}<\cdots<x_{i_{n}}
$$

answer: y_{k}
We want to doit in linear time
Revisit idea Quicksort:

- pick a pivot x_{j}

$$
\text { - } \frac{\left\langle x_{j}\right.}{A} \times x_{j} \frac{>x_{j}}{B}
$$

- If $|A| \geq k$ then look for k^{\prime} th element in A
- if $|A|=k-l$ then x_{j} is the k^{\prime} tho element
- if $|A|<k-1$ then we look for the k^{\prime} th element in B when $k^{\prime}=k-|A|-1$
If wi could always pick the pivot s.t min $\left\{|A|,|B| \mid \geq \mathrm{Ca}^{\prime}\right.$ when n^{\prime} is the current \# number in the set we wortion Then we obtain a liner algorthn $T(n) \leq T\left(\frac{c-1}{c} n\right)+\Theta(n)$
Definition when $|S|=2 k t \mid$ we call the $k+l$ 'st element the median of S
when $|S|=2 h$ we call the k 'th element the lower median and the $(k+1)^{\prime}$ st element the uppermelian of S

A deterministic linear time al gonthm for selection

Idea: un medians of smaller sets to achieve a good pivot to partition around

1. Partition S into $r=\left[\frac{n}{5}\right]$ sots $S_{1, S_{2}} \cdots S_{r}$ where $\left|S_{i}\right|=5$ for $c^{\prime}<r$
2. Sort each S_{i}
3. Identity the (upper) midian m_{i} of $\delta_{i} \quad i=1,2, \ldots, r$
4. Let $\left.M=3 m_{1}, m_{2}, \ldots, m_{0}\right\}$

5 , Find (upper) median m of M
G. un m as pivot when partitioning S

$$
\begin{aligned}
& \text { un } m \text { as pivot when par } \\
& \text { Let } S_{<}=\{\delta \in S \mid s<m\}, S_{>}=\{s \in S \mid s>m\}
\end{aligned}
$$

7. If $\left|S_{c}\right|=k-1$ retorn m

$$
\begin{aligned}
i f\left|\delta_{c}\right| & >k-1 \\
\delta_{:}: & =s_{<}
\end{aligned}
$$

soto 1 .

$$
\text { if }\left|s_{<}\right|<k-1
$$

$$
k=k-1 s_{<} 1-1
$$

$\bar{S}:=S_{>}$
Gobo

The orange set contains at least

$$
3\left(\left\lceil\frac{1}{2}\left[\frac{n}{\delta}\right]\right\rceil-2\right) \geq \frac{3 n}{10}-6 \text { elements of } S
$$

[We don't count 3 elements for the last ret and the] sot containing the median of medians
Similarly, the green net contains at least $\frac{3 n}{10}-6$ elements of S
Hence with $T(n)=$ \#comparisons made by the alsonthm

$$
T(n)=\left\{\begin{array}{l}
\Theta(1) \text { if } n \leq 140 \\
T\left(\frac{n}{5}\right)+T\left(\frac{7 n}{10}+6\right)+O(n) n>140
\end{array}\right.
$$

$\Rightarrow T(n) \leq c n$ for c suctably large (see Cormmpap 222)

Lower bound for findings median
assume $n=2 k+1$ so median m is the $(k+1)^{\prime}$ 'st element
Observation: In order for any algonthon of to correctly determine (find) m it must find k elements which are all smaller than m and k elements which an all large than m

In terms of acyclic orientations:
if x is smaller than m then $x \rightarrow \rightarrow, \ldots$, m
if b is large than m then $m \rightarrow->\ldots y$
So ft must have made a out of comparisons corresponding to the following structure

Adversary strategy
Goal: force A to make many useless comparisons
maintain the following sets U, L, S an $3 m l$
when U contains elements never in a comparison yet
L contains elements that adversary wall make largo then the median
S contains element that adverser will mane somali than the median
m will become the melian
Initially S_{1} Lar empty and $U=V($ all elements)
Ueron query compar (x, y) :

$$
\text { 1. } \quad x, y \in U \Rightarrow \operatorname{reply} x<y .
$$

2. $x \in U, y \in S \Rightarrow$ reply $x>y$

$$
U:=U-x, L:=L+x
$$

3. $x \in U, y \in L \Rightarrow \operatorname{reply} x<y$

$$
U:=U-x, S:=S+x
$$

$4 \cdot x \in S, y \in L: \operatorname{reply} x<y$
$5 \quad x, y \in S$ or $x, y \in L:$ if $x \longrightarrow y$ reply $x<y$ elan veply $y<x$
When $|U|=1$ adveroang lets m bu the last element in U. Now m is fixud

Claim advirany can for at least $\frac{n-1}{2}$ unis comparisons
p: all comparisons of type 1.- 4. are 'unless' (nonessential)
The dust can for ot (wort toradversins) is when A makes companion of type 1 as it velueas |U| by 2 .
Then are at least $\frac{n-1}{2}=k$ comparisons involucres elements,
Thus At must make af least

$$
n-1+\frac{n-1}{2}=\frac{3}{2} n-\frac{3}{2} \text { comparisons }
$$

at the end the essential edges from a tree structure litre this

all other comparisons made an answend consistently with blucand red arcs

The adversary finds an achdic ordewhs of the uagchic digraph D consistms of red and slue ares and constructs a bad input consisting of some permutation of $\langle\{2, \cdots n\}$ which forces the deterministic algonthon of to make at least $\frac{3 n}{2}-\frac{3}{2}$ comparisons befor it can output the marion m.

