Lower bounds for companison band sortins
Band on Baan section 2.4 and SBJ notro Section? known from e.s. DM507: Mergesort uxes $\theta(n \log n)$ comparions to jort a nombers

Deciosion trus
Every deterministic comparioun band (sortians) al sonthon A can be associatal with a so-calud decission tre:
 a) ootpot (a leat in $\left.T_{A}\right) \Rightarrow T_{A}$ has at leart n! leaves

- TA is abinamtre so at most 2^{h} lenves when T_{A} has heishth. Thus $2^{k} \geq n!\Rightarrow h \geq \log n!\sim n \operatorname{los} n-c n$
- Each pathP from wot of TA to a leaf corresponde to Comparisons made dy ft to sort some input and \# Compansous $=$ length of P so $A u n s \geq n \log n-c u$ comp.on some input

Lower bound for average \# comparisons via decission trees \# comparisons for a fixel permutation Π :
$\rho\{$ lusth of this path $l(P)$
π
P setot all paths from nootto aleat in TA
Det epl=$\sum_{p \in P}$ lensth $(p) \quad$ epl \sim external path lensth
Lemona 2.8 epl isminimized when T is almoot dalanad $p:$

Chanst in $\operatorname{ept}:(2(k+1)-k)+(d-1-2 d)=k+1-d<0$ a. $d \geq k+2$
Conclusion eps is minimum when
T

Ecman2.9 mun ep in binanytree with ℓ leaves is

$$
\ell\lfloor\log l]+2\left(\ell-2^{(\log l s}\right)
$$

p: clear if $l=2^{k}$ forsomek a ovum l is not a power of 2

$$
d=\left\lceil\log _{2} l\right\rceil \quad d-1=\left\lfloor\log _{2} l\right\rfloor
$$

\# haves at level $d: 2\left(l-2^{d-1}\right)$
So ep $l=l(d-1)+2\left(l-2^{d-1}\right)$

$$
=l(\alpha-1)
$$

Lemmahaco The avers path length in a bines tree with
U leaves is at least LOoses
p: The min averse path lensth is

$$
\begin{gathered}
\frac{l[\log l\rfloor+2\left(l-2^{\lfloor\log l\rfloor}\right)}{l}=[\log l\rfloor+\varepsilon \\
0 \leq \varepsilon<l \text { a) } l-2^{\lfloor\log l\rfloor}<l / 2
\end{gathered}
$$

Tho 2.11 The averan $\#$ comparisons done by any algonth to oort n nounbe, by comparisons is at least $\lfloor\log n!\rfloor=\Omega(n \operatorname{los} n)$

Adversary lowe bounds for sorting
Adversary one (very powerful)

- always maintain a list δ corthall permutations of input consistent with answers given so for
$\delta_{i}=$ permutations alive (still possible) a to i^{\prime} th comparison

$$
\left|\delta_{0}\right|=n!
$$

- When answernis $x<y$? in step i anoa such that $\frac{\left|\mathcal{L}_{i}\right|}{\left|\mathcal{K}_{i-1}\right|} \geq \frac{1}{2}$
- It will take at lest $\log _{2} n$! comparisons before input is sorted

$$
\left(\left|\alpha_{k}\right|=1\right)
$$

So At must do at least nlogn-cn comparisons on some ingot
Problem argument is correct but in each outer (comparison) the adversary ha, to construct \mathcal{L}_{i} from \mathcal{L}_{i-1} which takes time proportional to $\left|\delta_{i-1}\right|$

Can we mate a more efficient adversan??
want the answer to $x<y$? fast
while maintaining consistent answers

Adversary 2 (much los powerfull) assume $n=2^{k}$

Maintain a treestunctor | level size of eachbas |
| :---: |
| $n=2^{k}$ |
| 0 |

- Initially the root bag contains all n elements
- Sustrie $T(s)$ rooted at bass at level l contains at most $\frac{n}{2^{e}}=2^{k-l}$ elements and in total then ar u elements (so MANY bass are empty)
- While the adversary answer queries dy A the elements move down thous T until they are all in the n lent bass of six 1 at level k

States of a bash b at level e
b is open $\square b$: Each of the lett and night sostras of b
 have less than 2^{k-l-l} elements
b is left flushed? \square The left sobtrer of b has
 2^{k-l-1} elements
b is right flushed i^{6} The visht souter of 8 has 2^{k-l-1} elements

Idea! adversary only moves an element x to a lowe bags if $1 . x$ is in a new comparison or

$$
\text { 2. the box that } x \text { enters }
$$ is flushed

\Rightarrow adversary can force $\frac{n}{2} \log _{2} n$ comparisons

How to perform the stratesy?

- Move(u)
b(u) Corrent bag of u

1. If $b(a)$ is open Retorn
2. if $b(a)$ is left flushed

$$
\begin{aligned}
& b(u) \leftarrow b^{L}(u) \\
& \text { Move(u) }
\end{aligned}
$$

Retorn
3. If b(u) is visht flushal

$$
b(u) \in b^{R}(u)
$$

Move(u) Retorn

ue may move down sucul levils when we call MOVE(4)

Retorn

$$
\text { If }\left[\left[b^{2}\right]=2^{k-l-1}\right. \text { then }
$$

- mark bas risht.flushed
- $\forall u \in b$ MOve(u)

Retorn

Stratesy: While anowaring quevies dy \mathcal{A}
Move 2, lor zeroelements down in T cocth one exception:
After each mour of an element fromb we call CHECK(b) which could move up to 2^{k-l-l} elements from b and leave it empts

Anower to query $u<v$?

1. Let $\delta=$ lea, common ancesto of $b(u), b(v)$ in T
2. If $b \neq b(u), b(b)$

If $u \in T\left[b^{L}\right]$ answer $u<v$
$\varepsilon \ln$ anowe $u>v$
3 Elve $(w \log b=b(u), e(n$ vename $u, v)$
(a) if $b(u)=\delta(G)$ then
(a) if $\quad b(u)=\delta(v)$ then \quad anjwes $u<v$ and $\delta(u) \leftarrow b^{2}(u) ; b(v) \leftarrow b^{R}(u)$ Move(u); MOVE(v); CHECK(b)
(b) Eln if $b(v)$ in $T\left[b^{R}(y)\right]$ then anower $u<v ; b(u) \in b^{L}(u)$
MOVE(u) ; $\operatorname{CHECK}(b)$

Eln
answer $u>v$;
$b|u| \in \delta^{R}(u)$
Move (u)
CHECK(S)

Theorem 7.1 Going the stratesyabove the adversary can force any comparison based sorting alsonthen of to make $\Omega\left(u \log _{n}\right)$ comparisons
P: Initially all elements are at level 0 in the root jas

- At termination all elements are in their own lest bajat level $k=$ logan
- Between then events each bags becomes non-ernpty and then empty again at least once
- Claims: we can associate at least 2^{k-l-l} companions made by A privately to each bags at level l
p : Let b be any bags at level ℓ
a JJociate all companions $u \in 0$ whin $|b n i u, v\rangle \geqslant 1$ and $u, v \in T(\delta)$
There are at least 2^{k-l-1} such as b is not flushed beton we have made at hast 2^{k--1} companions of the type above (then are the only companions the move elements out ot b) conclusion at level l we con a sosciatio at hast

$$
2^{l} \cdot 2^{l-k-1}=2^{k-1}=n / 2 \text { companion) }
$$

Then an $\log n$ levels so in total adversary forms $\geq \frac{n}{2} \log _{2} n$ comparisons

Corollary 7.2 The adversary's strategy can be performed in time $O(n \log n)$

P: read yournlua
I dea: We don't med to construct T

- repremat the 2^{l} bass at level l by

$$
\delta_{l, 0}, \delta_{l, 1} \ldots \delta_{l, 2^{l}-1}
$$

- For each element u maintain $\ell(u)=$ leal of bag containing u blu) with $0 \leq \delta(u) \leq 2^{(u)}-1$ is the index of the bags at level $\ell(u)$ which contains u.

