. .

Rule 1: If
$$d(g_{1}=0:G_{1}k)-x(G_{0}k)$$

Rule 2: If $d(g_{1})=1$ and w (souly
Rule 3: If $d(g_{1})=1$ and w (souly
Apply Rule 1-3 until none copples
and let $G'=(V_{1}E')$ be resulting graph and
b' the resulting parameter
Notes
Notes
Notes
Notes
Notes
Notes if corrent parameter be' is=0 thus, we can
parameter coloring a vertex that
parameter coloring a vertex that
parameter coloring a vertex that
should be in VC in Rule 2 or hud to add
vor w to VC in Rule 3
2) $d_{G'}(\sigma) \leq k' \forall \sigma \in V'$ as Rule 2 cannot be applied
 $\Rightarrow |E'| \leq k''$ each vertex concoverant
Notes (V[G']] $\leq k''$
 $Wo st k' edges)
|V[G']| $\leq k''$
 $vert'$ $vert'$
 $vert'$ as Rule 3 down to apply$

Conclusion (For general N, k)
After applying Pules 1-3 outh none apply
to correct instance
$$\langle G' = (V'_1 E'), k' \rangle$$

We know
1. $\langle G'_1 k' \rangle$ is a gesinstance $\begin{pmatrix} G'_1 hasq VC \circ Psin \\ gh' \end{pmatrix}$
 $\langle G_1 h \rangle$ is a gesinstance
2. $|V'_1| \leq k^2 \leq k^2$ and $|E_1| \leq k^2 \leq k^2$
Now we can solve $\langle G'_1 k' \rangle$ buck force:
 $try all k' subsets of V'$
at most $\binom{k^2}{k'} \leq \binom{k^2}{k}$ of these
When k > 10 we have to try at most $\binom{100}{10} \sim 1.73 \cdot 10^{13}$
subsets
Thus in polynomial time we have veduced the original
instance to one colour the public is much faitor
to solve.

let C₁ be vertices decided to add to the VC when applying rules and let C' be VC found when Showing that <6', 4'> is a yes -instance Then Cluck is a voof G of size sk · Applying each of the rules 1-3 can be down in linear time in size of the current instance · Hence after doing O((n+m)k) work we have either decided that CG, h> is a no instance or we have derived an equivalent instance (G', h') s. t (G, b) is a yes-instance IZG' wis a yes-instance · We can decide < 6', 6'> usins at most (k) chucks of subnts of size k Each of then take time $O(W'(1+1E')) = O(k^2)$ · Putting it together we solve KGIL> in time $O((n+m)k) + O(\binom{k^2}{k}k^2) = O(g(k)(n+m))$ $= O(gk) \cdot vi$

Natural guistions 1. Can we find a Setter Kernel? (smaller size) 2. Solve Kernel faster than by South force.

A kernel of Size at most 2k for vertos.com Recall the LP-band approximetion alsouthin for VC: ×(u)+×lv)≥(YuvGE 0 < X(1) < 1 1. Sulve Zu = min Zxer, s.t 2. let & de an ophimal LP-solution 3. Take U=30 | XUIZ=2 We saw that $\frac{|\mathcal{U}|}{|\mathcal{U}_{opt}|} \leq 2$ Split V=V(G) into 3 xts Vz, V=, V, when $V_{<} = \int \sigma \in V \left[\hat{X}_{C} \right] < \frac{1}{2} \left\{ V_{=} = \int \sigma \in V \left[\hat{X}_{C} \right] = \frac{1}{2} \int \sigma d V_{>} = \int \sigma e V \left[\hat{X}_{C} \right] > \frac{1}{2} \right\}$ Note that Vz is independent (no edges usual) and then an no edges between Vz and V= (as x(w)+xor<1 vz Vz V= when uevz, veV=)

Theorem (Nemhauru and Trotter) Theorexist an optimel VC U* s.t. V, GU*GV_UV>

Let
$$k = |U^{k}|$$
 and vecall that we magazine $V_{y} \subseteq U^{k}$
Reduction rule (after solving LP and gethins option &)
. Let $G' = G [V_{y}]$ subgraph induced by V_{z}
. and Let $k' = k - |V_{y}|$
Note: if $|V_{y}| > k$, then $k^{k} > k$ as the theorem quaranties that
 V_{y} is contained in some optimal solution.
Hence we can answer not for $\langle G_{i}k \rangle$ costput $\langle G' = K_{k+1}, k' \rangle$
If $|V_{y}| = k$, then check if V_{z} is independent.
If $|V_{y}| = k$, then check if V_{z} is independent.
If $|V_{y}| = k$, then check if V_{z} is independent.
If $|V_{y}| < k$, then check if V_{z} is independent.
 $\langle G^{1}(k') \rangle$ is a Kernel curd $|V|G'|| = |V_{z}| < 2k$
a) $k \geq k \geq \sum \hat{X}(y) = \frac{1}{2}|X_{z}|$
Conclusion we have found a Kernel of Size at most $2k$
for $V \subset$ with parameter k
Note after lector: we may adjoint that $\sum \hat{X}(y) \leq k$
Now $k \geq \sum_{i=K}^{2} \hat{X}(y) = \frac{1}{2}|X_{z}| \leq N = 1$.
Now $k \geq \sum_{i=K}^{2} \hat{X}(y) = \frac{1}{2}|X_{z}| \leq N = 1$.

Back to our bar fisht problem with n=1000 k=10
First solve and view to LP (in polynomial bine)
Find
$$V_{C_1}V_{=}$$
 and $V_{>}$
If $IV_{>}I \ge k$ reject (answer no) vuless
 $IV_{>}I=k$ and $IV_{>}I$ is VC
Otherwise solve the bar fisht problem for
 $GEV_{=}J$ with parameter $k' \le k$
This can be done it in $O(\binom{2k}{k} \cdot k')$
For $k = 10 \binom{3^{\circ}}{10} = 184756$ so we easy solve
problem in a few xcoulds, even using buck force
 $\binom{100}{50} \sim 1.01 \cdot 10^{15}$ so we cannot hope to un
buck force except when k is small even on a small
kernel!
 $\binom{2k}{k} < 2^{2k} = 4^{k}$ so buck force als is $O(4^{k}, k^{2})$

ree search I dea: Given instance (G, h), try the edges in some order, using that if uv is an edse, then at least one of ce, v must be in the cover. Q assume k=3 e 1 decrans 1 for each a level c-d Zd 1 c-f b-d] d/ le Fail Fail Fail Fail Fail Fail Fail

2 reconside calls, each with parameter decreand by 1

We look for VC of size sk so huisht of tree is at most k-1 (depth is at most k) Cut most 2^k (-1) susposlem By prepressions via hule 2 (de) $\geq kti?$) we can assume that $de_1 \leq k$ for all vertices so $E = \frac{1}{2} \sum_{o \in V} de_1 \leq \frac{1}{2} nk$ Thus each of the 2k subpollens can be solved in time O(nk) So total ronning time is O(m+nk.2k) from ducking desressot Verbierin G.