Fixed parameter tractability
Band on parts from M. cygan et al "Parametizal Alsonthms"
Running example: vertex-cover (=bar fight preventionin)

- Suppon n people want to enter adar
- We know which pairs do not like each other and hence will start a fight if they are let in together
- Question: Fora given $k<n$ is it possible to exclude at m. ot k persons so that no fight between remaining people?

Model as a vertex cover problem:

$$
G=(V, E)
$$

Answer is yes' if we can partition V into $U_{1} V-U$
$s . t$

(independent)
and $\quad|U| \leq k$
We know: Vertex cover is NP-compluh Given $\left(G_{1} k\right)$ is then a $V C$ of six $\leq k$?

We must solve the bar fight prevention problem so what do wa do?
Suppon then an $n=1000$ people wanting to go to the bar (let assume, like in DK recently, the all have to book access) suppon we col allow at most $k=10$ persons excluded

Naive method: tryall 2^{n} subnts and check if at leastone is a $V C$ of sizes $\leq k$. Bad: $2^{1000} \approx 1.07 \cdot 10^{301}$ subsets tot

Better method: try all $\binom{n}{k}$ subnts of size k still not good as $\binom{1000}{10} \sim 2.63 \cdot 10^{23}$ cans to clack

We need a better approach!!
Solution: Problem reduction / Kernelization Consign conflict graph $G=(V, E)$ and k
Rule 1: If $d(v)=0:\langle 6, k\rangle-\lambda\langle G-v, k\rangle \quad$ (deletes) v is never in minimum $V C$

Rele2: If $d(v) \geq k t 1:\langle G, k\rangle \rightarrow\langle G-v, k-1\rangle$ we must include v in any VC of size $\leq k$
Rule 3: If $d(v)=1$ and w is only neighbors of $v:\langle G, k\rangle \rightarrow(G-3 v, w\}, k-1\rangle$ adding w to C is at lest as good a) adding o to

Rule 1: If $d(v)=0:\langle 6, h\rangle-\lambda\langle\sigma-v, k\rangle$
Ruli2: If $d(v) \geq k t 1:\langle G, k\rangle \rightarrow\langle G-v, k-1\rangle$
Rule 3: If $d(\mathbb{E})=1$ and w isonly neishboos of $\sigma:\langle 6, h) \rightarrow(G-3, w), k-1\rangle$

Apply Ruele:-3 vutil nom applies and let $G^{\prime}=\left(V_{1}^{\prime} E^{\prime}\right)$ be resoltins graph and ${ }^{\prime}{ }^{\prime}$ the rejoltins paramito
and shll edges in actual
Notes

1) if corrent parrametor $b^{\prime} i_{i}=0$ then wecan reject orisinal input $\langle\sigma, 6\rangle$. We only decreand parameter cohen we foond a vertex that
shoull be in VC in Kull 2 or had to add vorw to VC in Rule3
2) $d_{G^{\prime}}(v) \leq k^{\prime} \forall v \in V^{\prime}$ as Rule2 cannot deapplied $\Rightarrow\left|E^{\prime}\right| \leq k^{\prime 2} \quad$ each vertex can cover at mout k 'edga)
3) $\mid V\left(G^{\prime} \| \leq k^{2}\right.$:

$$
\begin{aligned}
& \left|V G^{\prime}\right| \mid \leq k: \\
& \left|V^{\prime}\right|=\sum_{V \in V^{\prime}} 1=\frac{1}{2} \sum_{v \in V^{\prime}} 2 \leq \frac{1}{2} \sum d(v)=\left|E^{\prime}\right| \leq k^{\prime 2} \leq k^{2} \\
& p^{v \in V^{\prime}} \\
& \text { as Ruli 3 dounotapply }
\end{aligned}
$$

Conclusion (For general n, k)
After applying Rules $1-3$ unto 1 none apply to corvent instance $\left\langle G^{\prime}=\left(V, E^{\prime}\right), k^{\prime}\right\rangle$
we know

$$
\begin{aligned}
& \text { 1. }\left\langle G^{\prime}, k^{\prime}\right\rangle \text { is a yesinstame } \begin{array}{c}
\left(G^{\prime} h a\right) \text { a } V C \text { of size } \\
\left.\leq k^{\prime}\right)
\end{array} \\
& \left.\prod_{j}, G, k\right\rangle \text { is a yosinstance }
\end{aligned}
$$ $\langle G, h\rangle$ is a yes instance

2. $\left|V^{\prime}\right| \leq k^{12} \leq k^{2}$ and $\left|E^{\prime}\right| \leq k^{\prime 2} \leq k^{2}$

Now we can solve $\left\langle G^{\prime},^{\prime}\right\rangle$ bonk force:
try all k^{\prime} subset) of V^{\prime} at most $\binom{k^{\prime 2}}{k^{\prime}} \subseteq\binom{k^{2}}{k}$ of these
whin $k=10$ we have to $t r y$ at moot $\binom{100}{10} \sim 1.73 \cdot 10^{13}$ seesnts
Thus in polynomial time we have reduced the original instance to one color the problem is much fasto to solve

Let C, be vertices decided to add to the VC when applying neles and let C' be VC found when showing that $\left\langle G^{\prime}, L^{\prime}\right\rangle$ is a yes-instana
Then $C, \cup C^{\prime}$ is $V V C$ of G of size $\leq k$

- Applying each of the rules 1-3 can be done in linear time in size of the current instance
- Hence after doing $O((n+m) k)$ work we have either decided that $\langle G, k\rangle$ is a no instance or we have derived an equivalent instance

$$
\begin{array}{r}
\left\langle G^{\prime}, h^{\prime}\right\rangle \text { s.t }\left\langle G_{1}(b\rangle\right. \text { is a ycs-instance } \\
\qquad\left\langle G^{\prime}, b^{\prime}\right\rangle \text { is a } y() \text {-instar }
\end{array}
$$

- We can decide $\left\langle\sigma_{l}^{\prime} l^{\prime}\right\rangle$ usinsat most $\binom{k^{2}}{k}$ checks of sudors of sir k
Each of then tate time $O\left(\left.\right|^{\prime}\left|+\left|E^{\prime}\right|\right)=O\left(k^{2}\right)\right.$
- Putting it together cos solve $\left\langle G_{l} k\right\rangle$ in time

$$
\begin{aligned}
O((n+m) k)+O\left(\binom{k^{2}}{k} k^{2}\right) & =O(g(k)(n+m)) \\
& =O\left(g(k) \cdot n^{2}\right)
\end{aligned}
$$

We have shown that an instance $\left\langle G_{1}, b\right\rangle$, when G has n virtus, can be decided by am alsonthm vanning in time $O\left(g(k) n^{2}\right)$ for some function g depundingonlyon k.

We parameterized the Vertux-coves problem wins the natural paramito $k=$ bound on size of $V C$
Definition a parameterized problem Q is Fixed Parameter Tradable (FPT) if there exists an alsonthm A_{Q} solons Q in time $O\left(f(b) n^{c}\right)$ for some compotalle function f and constant $c \in \mathbb{R}_{t}$
We uhowed above that Vertex. cover is FPT as the alsonthm we describal is an FPT alsonthm.

The way we solved vertex-cover Was by problem reduction.
What wa obtained at ter exhaustively applying ans $1-3$ is called a problem Kernel

Definition (Kernelisation, kernel)
A kernalization alsonthon (a kerala) for a parameterized problem Q is an alsonthm δ_{Q} that given an instance $\langle I, k\rangle$ works in polynomial time in $|(I, b)|$ and out pots an equivalent instars $\left\langle I^{\prime} k^{\prime}\right\rangle$, when $\left|I^{\prime}\right| t k^{\prime} \leq g(k)$ for every instance $\langle I, k\rangle$ of Q and g iss fixed compotalle function.
For vertex cover the alsonthem we described took input $\left\langle G_{1} k\right\rangle$ and produced a kernel $\left\langle G^{\prime}, k^{\prime}\right\rangle$ satisfying that $\left|G^{\prime}\right|+k^{\prime} \leq 2 k^{2}+k$

Note that if a parametrized problem Q with parameter has a kernel of size $O(g(k))$ for some g then we can solve Q by first finding a kernel anal then checking all possible solutions for the kernel (brute force approach)
Natural questions

1. Can we find a better kernel? (Smallu size)
2. Solve kernel faster than by south tore.

A kernel of size at most 2 k forvertor.covo
Recall the LP -band approximation alsonthm for VC:

1. Solve $z_{l}^{x}=\min \sum_{v \in V} x(v)$, s.t $x(u) t x(v) \geq 1 \quad \forall a v \in E \quad 0 \leq x(v) \leq 1$
2. Let \hat{x} de an optimal LP-solution
3. Take $U=\left\{v \left\lvert\, \hat{x}\left(\mathbb{U} \geq \frac{1}{2}\right\}\right.\right.$

We saw that $\frac{|U|}{\mid U_{\text {opt }} t} \leq 2$
Split $V=V(G)$ into 3 rets $V_{C}, V=V_{>}>$when

$$
\begin{aligned}
& \text { Split } \left.V=V(G) \text { into } 3 \text { rets } V_{\langle,} V_{=1}\right\rangle \\
& V_{<}=\left\{v \in V \left\lvert\, \hat{x}(U)<\frac{1}{2}\right.\right\}, V==\left\{v \in V\left(\hat{x}(G)=\frac{1}{2}\right\} \text { and } V_{>}=\left\{v \in V\left(\hat{x}(G)>\frac{1}{2}\right\}\right.\right.
\end{aligned}
$$

Note that V_{L} is independent (n_{0} edge) inside) and then an no edges detwen $V_{<}$and $V=(a) x(u)+x-1<1$ when $\left.u \in V_{c}, v \in V_{=}\right)$

Theorem (Nemhaure and Trotter)
Then exist an optimal $V \subset U^{*}$ s.t. $V_{>} \subseteq U^{*} \subseteq V^{\prime}=\cup V_{>}$

Theorem (Nemhauns and Trotter)
Then exist an optimal $V \subset U^{*}$ s.t. $V_{>} \subseteq U^{*} \subseteq V_{=}=U V_{>}$
Proof suppon X is an optimal $V C$ ot Gand that $X_{n} V_{<} \neq \phi$

- Let $X^{\prime}=\left(X \backslash V_{<}\right) \cup V_{>}$. Then X^{\prime} is a $V C$ as $V_{<}$is indepment and no edge uV with $u \in V_{L}, v \in V_{=}=$
- If $\left|x^{\prime}\right| \leq|x|$ we are done so a $200 m e ~\left|X^{\prime}\right|>|x|$
then $\left|V_{>}\right| X\left|>\left|X \cap V_{<}\right|\right.$. (*)
- Let $\varepsilon=\min _{v \in V_{0} V V_{>}}\left|\frac{1}{2}-\hat{X}(v)\right|$
- For $v \in V_{>} \backslash X$ let $X(v)=\hat{x}(v)-\varepsilon$

For $v \in V_{<} n X$ let $X(v)=\hat{x}(v)+\varepsilon$
For allother v ut $X(v)=\hat{X}(v)$

Now $\sum_{v \in V} x(v)<\sum_{v \in V} \hat{x}(\mathcal{U})$ by $(\mathbb{*})$,
contradicting that \tilde{x} is an optimal $L P-$ sol So we have an optimal VC U^{*} with

Let $k^{*}=\left|U^{*}\right|$ and recall that we may assume $V_{>} \leq U^{*}$
Reduction mule (after solving LP and getting opt sol \hat{x})

- Let $G^{\prime}=G[V=]$ sudgmphinduced by $V=$
. and let $k^{\prime}=k-\left|V_{>}\right|$
Note: if $\left|V_{>}\right|>k$, then $k^{*}>k$ as the theorem guaranties that $V_{>}$is contained in sone op timal solution.
Hence we can anowr 'no' for $\langle G, k\rangle \operatorname{ootput}\left\langle G^{\prime}=K_{k^{\prime}+2, k^{\prime}}\right\rangle$
If $\left|V_{>}\right|=k$, then check if $V=$ is independent.
If 'yes' $\left|V_{>}\right|$is $V C$ of size k for G.
El answer no for $\langle G, \varepsilon\rangle \operatorname{ootput}\left\langle G^{\prime}=k_{k^{\prime}+2, k^{\prime}}^{k^{\prime}}\right.$ then
Now we can a some $\left|V_{>}\right|<k$ and' then $\left\langle G_{1}^{\prime} k^{\prime}\right\rangle$ is a kernel and $\left|V G^{\prime}\right||=| V=1 \leq 2 k$
a) $\left.k \geq k^{*} \geq \sum_{v \in V} \hat{X}(v)=\frac{1}{2} \right\rvert\, x=1$

Conclusion we have found a kernel of six af most 2 k for VC with parameto k
Note after lector: we may assume that $\sum_{v \in V} \tilde{X}(c) \leq k$ Since othewin there is no $V C$ of size $v \in V$
Now $\left.k \geq \sum_{v \in X} \hat{X}(v)=\frac{1}{2} \right\rvert\, X=1$ so $|X=| \leq 2 k$

Back to our bar fight problem with $n=1000 k=10$

- First solve cujociatol LP (i npolynomial time)
- Find $V_{c_{1}} V_{=}$and $V_{>}$
- If $\left|V_{>}\right| \geq k$ reject (answer no) vales $\left|V_{>}\right|=k$ and $\left|V_{y}\right|$ is a $V C$
- Otherwise solve the dar fight problem for $G\left[V=J\right.$ with parametu $k^{\prime} \leq k$
This can be done itime O$\left(\binom{2 k}{k} \cdot h^{2}\right)$
For $k=10\binom{20}{v^{\circ}}=184756$ so we ea ry solve problem in a few x cold, even using bunts force $\binom{100}{50} \sim 1.01 \cdot 10^{29}$ so we cannot hope to en south force except when k is small even on a small Kernel!

$$
\binom{2 k}{k}<2^{2 k}=4^{k} \text { sobuktoracals is } O\left(4^{k} \cdot k^{2}\right)
$$

Idea: Given instance $\langle G, h\rangle$, try the edge, in some order, using that if $u v$ is anedse, then at least one of $u_{v} v$ must $b c$ in the cover.

assume $k=3$

$$
a-b
$$

 b

$$
k=3
$$

$$
h=2
$$

Fail Fall Fail Fail fail fail Fail ok $\mathrm{k} \rightarrow$

dee
$c-f$
$k=1$
$d / \backslash e$
c/ If $k=0$
 b
k decreans by 1 foreach level

2 recorrivecall), each with paramatu decreand bs 1

WC look for $V C$ of sin $\leq k$ so height of tree is at most $k-1$ (depth isat most k)

V at most $2^{k}(-1)$ subproslems
By preprocessius via Rule 2 ($d(v) \geq k t l$?) we can assume that $d(v) \leq k$ forall vertius so $E=\frac{1}{2} \sum d(v) \leq \frac{1}{2} n k$
Thus each of the 2^{k} suopwollems can be solved in time $O(n k)$ So total running time is $O\left(m+n k \cdot 2^{k}\right)$ from checking degrees ot vertus in G.

