
Introduction to exact algorithms

Band on hand out on parameter
'sed algorithms and

e÷÷÷÷:÷÷÷÷
exponential time :

let L c- NP and Eet p (b)
be a polynomial

such that ✗ c- L ⇐ I
astninsy-y.hr ) of length

most p (1×1) to
-
with A lx ,g) = 1

,

where

A =
A (L) is the

certificate checking

verifier for L .

ylx) is a
bit string of lens that

most pllxl )

so by checking for at most 21°
"" )
bit string ,

w whether d- law) =L we can check

whether ✗ c- L in time 012
"""

me)
for some constant c
Here we assume that it runs in hue 1×1

'



0$ notation : ignore polynomial factors

e. s 0 ( n' loin 3% ) =
0*(3^12)

Recall the Tree search
that we applied to vertex

- cover

search tree for

Y Y a.

a

t.AE/t☒ Is
% 4 tie
☒ ☒ ☒

when trying arc

☒ of size 3

cal TY MY 4 4- .

Fail Fail Fail Fail Fail Fail Fail 0hr

We can un the same
strategy to find an optimal

vertexcover

Now we pick a vertex
v not considered yet

and branch on whether
visor is

not

in the ve ✗ that we try

!
vcty.jo c-✗



V
,

• .

1! "

II. ii. 11
.
.li "

P ← ✗ -Hiiiii

✗ = ✗ ( so far )

Let 6 have n
vertices and recall that we

can bound

the work we do by looking at
# leaves in

the binary search

tree :

If this ha, I leave, then we solve at most
2l - l

sub wbhm , 11¥ nodes in search
free )

For vertex cover
the search tree

ha , depth at most

n= Wall

In the worst can we must
solve all subproblems at

the leave,

let Tln ) denote
A- leave, in the

search tree to - graphs
on

n vertices

clearlyTCn1ETCn-11-cTCn-iIandTG1-2ThusT@1E.7.Y



How to improve the
trivial 042" ) also ntbm ?

2 approaches
A. traverse the subtree in

a clever order and
un knowledge

about vertex covers seen so far

B. Un problem specific
observations to

reduce # leave, in search tree

AdA:_ Suppose we
have already found

a
Vc of sin r ,

then we do not

have to take more than
r - I accept

step , Green edn , in search
tree )

looking for some vertex cover
: either

Un Depth - First - search
to build the

search tree or un a
heuristic such as

the 2-apxals for Vc to find a
vertex cover Y mil let r = 141

key ingredient in the general secret
technique

called Branch gud bound

can also un a BFS strategy for searching
but this

requires a lot of space
to store sus problems



AdB_ When we and reduction rules in the FPT

algorithm for VC ,
we found that we could

reduce to an instance
when all vertices have

degree at least 2

Thus when we reject a vertex
v ( take a red

edse innards free ) we
must include at

least

2 vertices in the vertex
cover we

are building

for that subtree . /
•

ysiacn
In-3 • • n - 1

This implies that
we can set

T ( n ) I Tln - 1) c- Tln
-3) and 1-41--2

From DM 551 you
know how to solve an _- an - ( + an-39--2

characteristic equation F- ✗2-1=0

largest veal root is less than
1.4656

Hence Tcu ) E 1.4656
"

implying that we
can

solve Vertex cover in time 0*11.4656
" )



-

We can find a minimum vertex coverlemma

in a graph It on n
vertices and no

vertex

of degree larger
than 2 in time Oln

' )

•

%
. Ñ¥ •-0--0-

l I
-0-4

Hence we don't need
to branch in search tree if

no vertex in
remaining graph has degree

>2

⇒ if we reject or
we have to include at

least 3 vertices

in the Vc for that subtree

• n

a- my
o/\o

n - i

Now TCU ) c- Tcu - 1) +
Tcu -41

largest veal root of ✗4- ✗3- I = 0 is
less than 1.3803

⇒ TCU ) s 1.3803
" and we can solve

VC

in time 0*11.3803
" )



Back to vertex cover with parameter k
-

III only branch on edge U - V if

maxld@ lodes } I 3

( if no such vertex
un the lemma from previous pan )

I@123 n vertices

includeasat.IE/yinc1uau
neighbours/ \

☐ ☐ n - l
vertices

In -4

we removed u and all

its neighbours

•É
• So remaining graph has at⇐÷¥ least 4 vertices less

we only go to depth k ( looking
to - Vc of > in Sk )

So Tlkl Etch
- 1) + Tlk-4 )

↳
1- (b) £1.3803k and we can

decide

< Gie> in time
0*(1^38036)



Given n vertices 4,9 ,
. -
- in and

their distances

: dluiirj) for all i _tj

We seek a permutation IT
of 31,2, - . ,n

} such that

M = d loitering) -1 d 14TH irñciey) ② I

i.=L

is minimized

vies let OPT [Siri] be the length
of a

shortest path that start> in
on
,

and then visits

all vertices in S
and ends in Vi

Then

M - min } OPT Ivars , - irnsiif-dlvi.ch/ic-
this , - - in /



How do we aompwh OPT [Waitz , - - -93,0;) ?

Un dynamic programming
:

lemmaoPTL-s.ir
;] =/

dt%%) if 5--1%1

min }OPTES-oiirifidlok.ch/vnc-S-oo/ifhviKSPwot:1fs=viit follows from it> definition
that

OPTL-sir.3-dlv.ir;)

so assume 1st > I

0
,

if Éx→% is optimal
Uk

for Siri then
•

is

optimally%
on

S - ri , on

Siri



i.
¥÷÷÷÷÷÷;↳tms

2 : For i ← 2 ton do

3 : opt Elodie] ← dlviiri)

4 : For j ← a ton- I
do

5 : For 5£44 ,
. . .vn } with 151--5

do

6 : For vies do

7 : OPTL-s.vij-minboPTL-s-oiiritdlk.FI/vkGS-oi }

8 : Return moufopTL-ks.is , --43,0;] + dlviii) / violin - - -soul }

-

Function TSP calculates a nun wot Tsp
tour by

lemma

computing 01h22
" ) shortest paths ← (

OPT calculations )

Pivot : The #of path lengths computed
in line 7- is

j

ÉI:') - Eli -4
d- I
- j- l choices for ok

j=2 p

H-otj-subntsotann-p.se t
J choice, frog

using that [ (F) =L
"

( binomial formula )
jet

we get j

ÉI:') . Eli -4s n' III. f- n'2
"

j=2 e- I j -7

In lines 3 and 8 we compute a total
of 21h- 1)

path length
☐



Conclusion : we can solve TSP in time

0 (n' 2
" ) i 0*12

"

)

Recall the naive algorithm
for TSP

check C- 1) ! permutation .

This has running time Ocu ! ) ~ Ole
" ' " " )

a) In In ! ) ~ n Inn

so the dynamic programming algorithm
is much better

'



FPTvwsusx.E.DE/inition-A parameterized problem
Q with parameterhe

is slicewin polynomial (XP) if
can be solved in

time

0 ( f-C) risk
) ) for some functions f , g

Note : QEFPT ⇒ QE XP as we can let s be a
constant c

Clique is in XP : given <
G
,
k> try all (1) susnt,

when n =/V91 .

Then an Ocnk ) b- oubnb of an
n - set

check if given b. oubnt,

so clique is solvable
in time 0 (nkebi )✓ is a clique

Open : is clique in FPT ?

Widely believed that
the answer is no

!

Suppon we parametrize
k -clique by the

maximum desired

of the input graph
.

For each vertex ve V64
we can check

whether u is in a

h - clique by checking
all the04% subnt, of its neighbours

so when input has maximum
degree A we can

check

for a k - clique in time
Oln . 2?ñ ) so

k - clique is FPT when parametrized by maximum
deserve A



coloorin.sisdiftr.cat#
Recall that

already 3- coloonhs is NPC

So we can conclude : ←

-

Unless P=NP then cannot existlemma

an algorithm f- solving
k - colouring in

time

Off@1ns
") ) for general k .

( this would imply that
3-colouring

would be polynomial )

\.


