Introduction to exact alsonthms
Band on handout on parameterised al sonthms and handout on exact exponential algonthus
Every problem: NP can de solvecl in exponential timon:
Let $L \in N P$ and let $p(k)$ be a polynomial such that $x \in L \Leftrightarrow \exists$ astrins $y=y(x)$ of length mort $P(|x|)$ forwith $A(x, y)=1$, when $A=A(L)$ is the certificate checking Mrifier for L.
$y(x)$ is a ditotring of lensth at most $p(|x|)$ So bycheckins for at moot $2^{p(|x|)}$ dit strings ω whether $A(x, \omega)=1$ we can check whoth $x \in L$ in time $O\left(2^{\text {p||x|) }}|x|^{c}\right)$ for some constant c
Here we asoune that of runs intine $|x|^{c}$

Ot notation: ignore polynomial factors

$$
e \cdot s O\left(n^{3} \log ^{2} n 3^{n / 2}\right)=O^{*}\left(3^{n / 2}\right)
$$

Recall the Tree search that we apphad to Vertex. cover

search tree for

when trying a VC of size 3

Fail Fall Fail Fail fail Fail Fail ok
We can un the same strategy to find an optimal vertoxcover Now we pick a vertex or not considend yet and branch on whether v is or is not in the VC X that we try

v,

Let G have n vertius and recall that we can bound the wort s we do by looking at \#leaves in the binary search tree:
If this has ℓ leaves then wo solve at most $2 l-1$ sub whims (Anodes in search tree)
For vertex cover the search tree has depth at most

$$
n=|V(G)|
$$

In the worst can wa must solve all subpwblems at the leave, Let $T(n)$ denote $\#$ leaves in the reach tree for sraphson n vertices
Clearly $T(n) \leq T(n-1)+T(n-1)$ and $T(l)=2$
Thus $T(n) \leq 2^{n}$

How to improve the trivial $O^{*}\left(2^{n}\right)$ alsonthm?
2 approaches
A. travern the subtree in a clever order and un knowledge about vertercovers seen jo far
B. Un problemspeccitic obrivatious to reduce $\#$ leaves in reach tree
Ad A: Suppon we have already found a $V C$ of dire r, then we do not have to take mon than $r-($ accept steps (greenedses in search tree)
looking for some vertexcourer: either
un Degth-First-xarch to build the
search tree or un a hen rustic such a)
the 2-apx als for $V C$ to find a vertaxcouer Y and let $r=|y|$
Key ingredient in the semen search technique callich Branch and bound
can also una BFS strategy for searching but this requires a lot of space to stor subproblem

Ad B when we und reduction mules in the FPT algonthen for VC, we found that we cooll reduce to an inotana coleen all vertus have degree at least 2
Thus when we reject a vertex vv (takes red edge in ranch tree) we must incluch at least 2 vertices in the vertixcover we are building for that subtree.

This implies that we can set

$$
T(n) \leq T(n-1)+T(n-3) \text { and } T(1)=2
$$

From DM551 you know how to rive $a_{n}=a_{n-1}+a_{n-3} a_{1}=2$
Characteristic equation $\quad x^{3}-x^{2}-1=0$
largest real root is less than 1.4656
Hence $T(n) \leq 1.4656^{n}$ implying that we can
Solve Vertex cove in time $O^{*}\left(1.4656^{n}\right)$

Lemma We con find a minimum vertex cover in a graphite on n vertices and no vertex of degree large than 2 in time $O\left(n^{2}\right)$

Henna wi don't need to branch in perch tree if no vertex in vemainius graph has degree >2 \Rightarrow if we reject or we have to include cot least 3 virion in the VC fo, that subtren

Now $T(n) \leq T(n-1)+T(n-4)$
largest real root of $x^{4}-x^{3}-1=0$ is 6 en than 1.3803 $\Rightarrow T(n) \leq 1.3803^{n}$ and we can dolve VC in time $O^{*}\left(1.3803^{n}\right)$

Back to vertex cover with parameto k
Idea only branch on edge $u-v$ if $\max \left\{d(y)_{c} d(x)\right\} \geq 3$
(if no such vertex un the lemma from previous page)

we removed u and all its neishdoors

So remaining graph has at least 4 vertices less

We only go to depth k (lookingforVC of ain $\leq l e$)
So $T(k) \leq T(k-l)+T(k-4)$
$\mathcal{J}(L) \leq 1.3803^{k}$ and we can decide $\langle G, k\rangle$ in tim $0^{*}\left(1.3803^{k}\right)$

Solving TSP exactly cesins dynamic programming
Alsonthanic idea der to Bellman, Held and Karp Given a vertus $v_{1}, v_{2} \ldots, v_{n}$ and their distance $d\left(v_{i}, v_{j}\right)$ for o ll $i \neq j$
We seek a permutation π of $31,2, \ldots, n\}$ such that

$$
\begin{align*}
& \text { We seek a perwmsar } \tag{ए}\\
& \left.M=d\left(v_{\pi(n)}, v_{\pi(s)}\right)+\sum_{i=1}^{n-1} d\left(v_{\pi(i), ~ v i(i+1)}\right)\right)
\end{align*}
$$

is minimized
Idea: For every subset $S \subseteq\left\{v_{2}, v_{3}, \ldots, v_{n}\right\}$ and $v_{i} \in S$ let OPT $\left[S_{i} v_{i}\right]$ be the lensth of a shortest path that startsin v_{1} and then visits all version in S and ends in v_{i}

Then

$$
M=\min \left\{\text { OPT }\left[\left(v_{2}, v_{3}, \ldots, v_{n}\right\}_{1} v_{i}\right]+d\left(v_{i,}, v_{1}\right)[i \in\{2,3, \ldots, n\}\right.
$$

How do we compute OPT $\left.\left[3 v_{2}, v_{3}, \ldots v_{n}\right\}, v_{i}\right]$?
Un dynamic programming:
Lemma

$$
\text { OPT }\left[S, v_{i}\right]= \begin{cases}d\left(v_{1,} v_{i}\right) & \text { if } \left.S=3 v_{i}\right\} \\ \min \left\{\operatorname{OPT}\left[S-v_{i}, v_{k}\right]+d\left(v_{k}, v_{i}\right) \mid v_{k} \in S-v_{i}\right\} i f\left\{v_{i}\right\} C S\end{cases}
$$

Proof: if $S=v_{i}$ it follows from its definition that

$$
\text { opT }\left[S_{i} v_{i}\right]=d\left(v_{1}, v_{i}\right)
$$

so assume $|S|>1$
 for $S_{i} v_{i}$ then

$S-v_{i}$

Dynamic programming alsonthn for TSP
Function $T S P\left(\left\{v_{1}, v_{2}, \cdot v_{n}\right\}, d\right)$

$$
\begin{aligned}
& \text { For } i \leftarrow 2 \text { to } n \text { do } \\
& \text { opt }\left[\left\{v_{i} i_{i}, v_{i}\right] \in d\left(v_{1}, v_{i}\right)\right. \\
& \text { For } j \in 2 \text { ton -1 do } \\
& \text { For } S \leqslant\left\langle v_{2}, \ldots v_{n}\right\} \text { with }|S|=j d o \\
& \quad \text { For } v_{i} \in S \text { do } \\
& \left.\quad \text { OPT }\left[S, v_{i} j \leftarrow-\min \right\} \operatorname{OPT}\left[S-v_{i}, v_{k}\right]+d\left(v_{k_{1}}, v_{i}\right) \mid v_{k} \in S-v_{i}\right\}
\end{aligned}
$$

8: Return min $\left.\left\{\operatorname{OPT}\left[3 v_{n}, v_{3}, v_{n}\right\}, v_{i}\right]+d\left(v_{i} v_{i}\right) \mid v_{i} \in\left\{v_{11}, \ldots, v_{n}\right\}\right\}$
Lemma Function TSP calculation a mun cost TSP tour by computing $O\left(n^{2} 2^{n}\right)$ shortest paths \leftarrow (OPT calculations)
prot: The \#ot path lengths comported in line 7 is
using that $\sum_{j=1}^{\substack{n}}\left(\begin{array}{l}n \\ j \\ j\end{array}\right)=2^{n} \quad$ (binomial formula)
we set

$$
\sum_{j=2}^{\operatorname{sct}}\binom{n-1}{j} \cdot \sum_{i=1}^{j}(j-1) \leq n^{2} \sum_{j=1}^{n}\binom{n}{j}=n^{2} 2^{n}
$$

In lines 3 and 8 we compute a total of $2(n-1)$ path length

Conclusion: We can solve TSP in firm

$$
O\left(n^{2} 2^{n}\right)=O^{x}\left(2^{n}\right)
$$

Recall the naive algonthm for TSP check (n-1)! permutation.
This has running time $O(n!) \sim O\left(e^{n l_{n n}}\right)$ a) $\ln (n!) \sim n \ln n$

So the dynamic programming algonthm is much better'
$F P T$ ursus $X P$

Definition A parameterized problem Q with parameterk is slicewis polynomial (XP) if can de solval in time $O\left(f(k) n^{g(k)}\right)$ for some functions f, g

Note: $Q \in F P T \Rightarrow Q \in X P$ as we can l et s dea constant c

Clique is in XP: given $\langle 6, k\rangle$ tryall $\binom{n}{k}$ subsets when $n=|V(G)|$. Then an $O\left(n^{k}\right) k$-subntiof an n-ret

So cheque is soluble in time
$O\left(n^{k} \cdot k_{R}^{2}\right)$ cluck if given $k \cdot$ oubnts isaclism

Open: is clique in FPT? widely believed that the anower is no!
Suppon we parametrize k-cliger of the maximum degree Δ of the input graph.
For each vertex $v \in V(G)$ we can check whet the v is ina h-chigue by checking all thc(2^{Δ}) subnt, of its neighbours So when input has maximum degree Δ we can check for a k-clique in time $O\left(n \cdot 2^{\Delta} \cdot \Delta^{2}\right)$ so k.disue is FPT when parametrized by maximum degree \triangle

Colour ring is difficult
Recall that already 3-coloonhs is NPC

So we can conclude:

Lemma Unless $P=$ NP there cannot exist an algonthem for solving k-colouring in time $O\left(f(b) n^{g(k)}\right)$ for general k.
(this would imply that 3-colouns would be polynomial)

