Context-free Grammars
(knownfrom DM 565)

$$
\begin{aligned}
& G=\left(V, \sum, R, S\right) \\
& V=\text { variables } \\
& E=\text { alphabet } \\
& R=\text { Rules } \\
& \cdot S=\text { start symbol }
\end{aligned}
$$

Derivation $S \Rightarrow u_{1} A_{1} v_{1} \Rightarrow u_{2} A_{2} v_{L} \Rightarrow \ldots \Rightarrow u_{k} A_{h} v_{h} \Rightarrow w \in \Sigma^{*}$
each step replaces a variable A_{i} by pome right hand side of a rule in R. We witt $S \stackrel{*}{\Rightarrow} w$ if s can Anne ω in one or more steps.

$$
L(G)=\left\{\omega \in \Sigma^{*} \mid S \stackrel{*}{\Rightarrow} \omega\right\}
$$

why context-fres?
replacing A in uAr by $A \rightarrow \gamma \in R$ does not depend on U ore

Example
$G: S \rightarrow a S b|S S| a b$
So $R=\{S \rightarrow a S b, S \rightarrow S S, S \rightarrow a b\}$
Parntice for

$$
S \Rightarrow a S b \Rightarrow a S S b \Rightarrow a a b S b \Rightarrow a a b a b b
$$

$G: S \rightarrow a S b|S S| a b$
What is L(G)?
Claim: $L(G)$ is the set of strings with the same \#of a^{\prime} 'sand b's in which every prefix has at least
a) many a^{\prime} as $b^{\prime} s=L^{\prime}$

Clary we have $L(G) \subseteq L^{\prime}$ as every derivation preserve) the property

Suppon w has the property above if $|\omega|=2$ then $S \rightarrow a \delta=\omega$ devi (v) ω suppon that even strong $\omega \in L^{\prime}$ with $\left.\mid c_{0}\right)<2 k$ can be derived and lookat $w^{\prime} \in l^{\prime}$ with $\left|\omega^{\prime}\right|=2 k+2$
can 1 every proper prefix of w' has more a's than b's
Thess $w^{\prime}=a w^{\prime \prime} b$ when $w^{n} \in L$ and

$$
\left|w^{\prime \prime}\right|=2 k
$$

By induction $S \stackrel{B}{\Rightarrow} w^{\prime \prime}$ and then

$$
S \Rightarrow a S b \stackrel{*}{\Rightarrow} a \omega^{\prime \prime} b \text { so } S \stackrel{x}{\Rightarrow} \omega^{\prime}
$$

$\operatorname{Con} 2 \quad \omega^{\prime}=\omega, \omega_{2}$ when $\omega_{i} \in L^{\prime} \quad$ for $i=1,2$
By induction $\delta \stackrel{*}{\Rightarrow}) \omega_{1}$ and $\delta \stackrel{x}{\Rightarrow}, \omega_{L}$ so

$$
S \rightarrow S S \stackrel{x_{0}}{=} \omega_{1} S \stackrel{x_{0}}{\Rightarrow} \omega_{1} \omega_{2}=\omega^{\prime}
$$

So $S \stackrel{\text { to }}{\Rightarrow} w^{\prime}$
We have shown that $L G 1=L^{\prime}$
Note that L 'is not regular as

$$
L^{l} n a^{*} b^{*}=\left\{a^{n} b^{n} \mid n \geq 0\right\}
$$

Theorem if L is a regularlanguag
then $L=L(G)$ for some context-fre grammar G
P : Let $M=\left(Q, \Sigma, S, q_{0}, F\right)$ be a $D F A$ with $L(M)=L$

$$
\begin{array}{r}
\text { Let } M=\left(W, L, 0, q_{0}\right) \text { Variables in } G=(V, \Sigma, R, S) \\
\left.Q=\left\{q_{0}, q_{1}, \ldots q_{6}\right\} \longrightarrow x_{0}, x_{1}, \ldots, x_{k}\right\}
\end{array}
$$

Rubs in $6:$ if $0 \xrightarrow[q_{i}]{ } 0$ a q_{j} then $X_{i} \rightarrow a X_{j} \in R$
if $q_{i} \in F$ then $X_{l} \rightarrow \varepsilon \in R$
X_{0} is starting symbol for G
Suppon $\omega \in L, \omega=a_{1} a_{2} \cdots a_{n}: \quad 0 q_{0}, 0 \xlongequal[q_{1}]{a_{2}}, 0 \rightarrow$
Then $X_{0} \Rightarrow a_{1} X_{i_{1}} \rightarrow a_{1} a_{2} X_{i_{2}} \Rightarrow \ldots \Rightarrow a_{1} a_{2}-a_{n} X_{i_{n}} \Rightarrow a_{1} a_{2} \cdots a_{n}=w^{n}$
Suppon $\omega^{\prime} G L(G) \quad X_{0} \Rightarrow b_{1} X_{j_{1}} \Rightarrow b_{1} d_{2} x_{j_{2}} \Rightarrow \ldots \Rightarrow \omega^{\prime} X_{j p} \Rightarrow \omega^{\prime} p=\left|\omega^{\prime}\right|$

Fact (we do not proc it) Every contest-fre language over an alphabet Σ with $|\Sigma|=1$ is alpo regular
So for alphabets \sum worth $|\Sigma|=1$ L is regular $\Leftrightarrow L$ is context-fre

This allows us to conclude es. that $L=\left\{a^{p} \mid\right.$ pisapriuc $\}$
is not a context-fre lansuan

Question 1: checking membership of a regular language

Given a DFA (NFA) M and $\omega \in \Sigma^{*}$; Does $\omega \in L(M)$?
This is easy to cluck in linear time for a DFA: just'eat' w one character a a time and check of we reached an accepting state after reading w.
When M is an NFA we must first convert M into an equivalent M' DEA and then do as above to check if $\omega \in L\left(m^{\prime}\right)=L(m)$
This may take exponential time as $\left|Q\left(x^{\prime}\right)\right| \in O\left(2^{102\left(m^{\prime}\right)}\right)$

Question 2: checking membership ot a context-free lomsuage
Given a Context-free grammar G and $\omega \in \sum^{*}$ is $\omega \in L(G)$?

Not so easy:
Examph $S \rightarrow S A|\varepsilon, A \rightarrow a| \varepsilon$

$$
S \rightarrow S A \rightarrow \cdots \delta A^{k} \rightarrow A^{k} \rightarrow A^{k-1} \rightarrow \ldots A A \rightarrow a A-1 a 9
$$

We have no bound on the length of a derivation so we cannot check all poorblederivations
Solution: Consider chomsky CFG's: All neles of the form $A \rightarrow B C$ o, $A \rightarrow a$ plus possibly $S \rightarrow \varepsilon$

Let G dea CFG on chomsky form and let we w with $|w|=n$
Then every derivation of a string of length n has exactly $2 n-$ (step):

$$
\begin{aligned}
& S \rightarrow A B \xrightarrow{\begin{array}{c}
n-2 \\
\text { step }
\end{array}} x_{1} x_{2}-x_{n} \\
& \xrightarrow[s+(-)]{n} a_{1} a_{L} \cdot a_{n}=\omega
\end{aligned}
$$

Algonthm for checking whet her $w \in L(G)$ when G is a CFG in chomsky form:

- Let $k=|w|$ and $t r y$ all poosisu derivations of length $2 k-1$
- Canbedone mar efficiently, but not important hen

Theorem 2.9
Every context-free language is generatul by some CFG in Chomsky normal form

P: 6 in chomsky form $\Rightarrow G$ iss CFG
other direction: suppon 6 is CFG. we will convert 6 to a chounsky grammar G^{\prime} in 4 steps

1. Add a new start variable S_{0}
2. Eliminate ε-relies $(A-\partial \varepsilon)$ except for new starting vanish
3. Eliminate $A \rightarrow B$ roles
4. Convert long niles $A \rightarrow A_{1}, A_{2}-A_{4}, l \geq 3$ to reveal s horta miles and convert $A \rightarrow C D, A \rightarrow C D, A \rightarrow C d$ to proper format
ad 1. add S_{0} and $S_{0} \rightarrow S$
then S_{0} dow not appear on an rishthand sigh of a rule
clearly $S \underset{G}{\underset{\sim}{*}} \omega \Leftrightarrow S_{0} \stackrel{*}{*} \omega$

Fix an ordenng of the variables in V
ad 2: removing \mathcal{E}-rules
process the transitions according to the ordering of variables given above
cessomi $A \rightarrow \mathcal{E}$ and A is next in the order with an ε-transition

- For each mile $X \rightarrow \gamma$ in R contains at least one occurrence of A in γ replace each subset of occurences of A in 8 by ε
e.g. $X \rightarrow$ uAvAw $\begin{aligned} & X \rightarrow \text { uvw } \\ & X \rightarrow \text { add then }\end{aligned}$

$$
\left.\begin{aligned}
& x \rightarrow u \vee w \\
& x \rightarrow u A \vee w \\
& x \rightarrow u \vee A w \\
& x \rightarrow u A v A w
\end{aligned}\right|^{x}
$$

- If $X \rightarrow A$ is a rok, then add $X \rightarrow \varepsilon$, unkss the transition $X \rightarrow \varepsilon$ Was already removal (X seton A in order)
ad 3 removing unit reles
process variables according to the fixcelord of the right hand sich:

Let $A \rightarrow B$ dea muk of R add veles $A \rightarrow u$ forall u s.t $B \rightarrow u$ is in R, venless
$A \rightarrow u$ isa unit mh $(A \rightarrow C)$ that we alrady prosesocd
repeat unhl no mon unit nuis
Eaxy to ree that we shll have

$$
S_{0} \stackrel{x}{\Rightarrow} w \Leftrightarrow S \stackrel{x}{G} w
$$

ad 4. Eliminating long neles
a) let $A \rightarrow u_{1} u_{2} \ldots u_{k_{1}} k \geq 3 \quad u_{i} \in V \cup \Sigma$ be a mile of R
create $k-2$ new variabios $A_{1}, A_{2},-A_{k-2}$ (privato to this reglacement.)
replan $A \rightarrow u_{1} u_{2} \ldots u_{n}$ by

$$
\begin{aligned}
& A \rightarrow u_{1} A_{1} \\
& A_{1} \rightarrow u_{2} A_{2} \\
& \vdots \\
& A_{k-2} \rightarrow u_{k-1} u_{n}
\end{aligned}
$$

b) If $A \rightarrow u_{1} u_{2}$ isin R with at least on of u_{1}, u_{2} in Σ replacu such a u_{i} by a nuo variabh U_{i} and $u_{i} \rightarrow u_{i}$ e.s $A \rightarrow b X$ is repland by $A \rightarrow u_{b} X$ $u_{b} \rightarrow b$

Example $S \rightarrow a S a|b S b| A$ and $A \rightarrow a|b| \varepsilon$

1. add $S_{0} \quad S_{0} \rightarrow S, S \rightarrow a S a|b S b| A, A \rightarrow a|b| \varepsilon$

Fix order of variables $A<S<S_{0}$
La remove $A \rightarrow \varepsilon: \quad S_{0} \rightarrow S, S \rightarrow a S a|b S b| A|\varepsilon, A \rightarrow a| b$
26 remove $S \rightarrow \varepsilon$: $S_{0} \rightarrow S \mid \varepsilon, S \rightarrow$ ca $\left|a S_{a}\right| f b|b S b| A, A-a \mid b$
ba remove $S \rightarrow A: \quad S_{0} \rightarrow S|\varepsilon, S \rightarrow a a| a S a|b b| b S b|a| b, A \rightarrow a, b$
36 remove $S_{0} \rightarrow S: S_{0} \rightarrow$ aa $|a S a| b b|b S b| a|b| \varepsilon$

$$
\begin{aligned}
& S \rightarrow a a|a s a| b b|b S b| a \mid b, \\
& A \rightarrow a \mid b
\end{aligned}
$$

4 eliminate lows mes
add new variable, C, D and $n(C)(C S a, D \rightarrow S b$ un then to brake mho of length 3
Fix rules of length 2 with cat least one non-variabl.

$$
\begin{aligned}
& S_{0} \rightarrow a a|a C| b b|b D| a|b| \varepsilon \\
& S \rightarrow a a|a C| 8 b|b D| a \mid b \\
& A \rightarrow a, b, C \rightarrow \delta a, D \rightarrow S b
\end{aligned}
$$

\int un A, C and D and new variable B worth $B \rightarrow \delta$

$$
\begin{aligned}
& S_{0} \rightarrow A A|A C| B B|B D| a|b| \varepsilon \\
& \delta \rightarrow A A|A C| B B|B D| a \mid \delta \\
& A \rightarrow a \\
& B \rightarrow \delta \\
& C \rightarrow S A \\
& D \rightarrow S B
\end{aligned}
$$

