Push down automate (PDA)
T
Kike an NFA with an co. stack

1 dea for $L=\left\{a^{n} \delta^{n} \mid n \geq 0\right\}$.
while reading a's: posh 'A' oustack when seing a b: Pop 'A' from stack while reacius b's: pop 'A' from stack If stack becomes empty and ω is read accost rad

$$
a a a b b b \sim 1
$$

Problem: how do we detect that the stack is empty?
Solution: pooh a special symbol $\$ \notin \Sigma$ on stack initially

NB: we need \& as wo cannot ask for 'empty stack'
PDA for $L=\left\{\left.O^{n}\right|^{n} \mid n \geq 0\right\}$

claim $L(m)=L$

Formal definition of a PDA:

$$
\begin{aligned}
& M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, F\right) \\
& \text { a) NFA stack alphabet } \\
& S: Q \times(\Sigma \circ \varepsilon) \times(\Gamma \circ \varepsilon) \rightarrow P(Q \times(\Gamma \circ \varepsilon))
\end{aligned}
$$

Non-deterministic!
Macceots ω if $\omega=\omega_{1} \omega_{2} \cdots \omega_{m}$ when $\omega_{i} \in \sum_{\varepsilon}(\Sigma 0 \varepsilon)$ and \exists states $r_{0}, r_{1}, r_{L}, \ldots r_{m} \in Q$ and stinks) $s_{1,} s_{2} \ldots s_{m} \in \Gamma^{*}$

1. $r_{0}=q_{0}$ and $s_{0}=\varepsilon \in$ start with Emptystack
2. For $i=0,1,2 \ldots, m-1:\left(r_{i+1}, b\right) \in \delta\left(r_{i}, \omega_{i+1}, q\right)$ when $s_{i}=a t$ and $s_{i+1}=b t$ for some $a, b \in \Gamma_{\varepsilon} t \in \Gamma^{*}$ 1.e M moves properly according to state, stack and next input symbol (or ε)
3. $r_{m} \in F($ so m reaches an accessions station after procesoinges)

$$
\left.L(m)=h \omega \in \Sigma^{*} \mid m \text { accepts } \omega\right\}
$$

Digraph representation:
$a, b \rightarrow c \leftrightarrow$ when reading $a \in \Sigma_{\varepsilon}$ from in put
M may veplaer bon the to of the stack by c
each of $a_{0} b, c$ may be the empty string!

claim $L(m)=L$
M can only reach an accept stats and at the same him have read all of ω if $\omega \in L$

Examph 2.16

$$
L^{\prime}=\left\{a^{i} \delta^{j} c^{k} \mid i_{1 j}, k \geq 0 \text { and } i=j \text { or } i=k\right\}
$$

NB L^{\prime} is not regular: $L^{\prime} \cap a^{*} b^{*}=\left\{c^{n} \delta^{n}|n \geq 0\rangle\right.$
How to construct PDA m with $L(m)=L '$?
Let M guess what ho $i=j$ or $i=k$

check for $L(m)=L^{\prime}$:

- $L^{\prime} \leq L(m)$
$a^{3} b^{3} c^{2} \in L$
$a^{3} b^{2} c^{2} \notin L$
- $L(m) \subseteq L^{\prime}$
$a^{3} b c^{3} \in L$
$a^{3} \partial c^{2} \notin L$
$\varepsilon \in L$
$c^{2} d^{3} c^{4} \notin L$

Examph 2.18

$$
L^{\prime \prime}=\left\{\omega w^{R} \mid \omega \in 40,13^{*}\right\}
$$

eady to show via pumping lemma that $L^{\prime \prime}$ is not regular:

- Suppose misa DFA with $L\left(M 1=L^{n}\right.$ and let $p=$ \#statas in M.
- Let $s=\frac{O I^{P} I^{P}}{P^{P} O^{P}} w^{w^{L}}$
- adversam sives us $x_{2} y, 2$ s.t

$$
|x y| \leq p,|y|=j \geq 0 \quad \text { and } \quad \delta=x y z
$$

- Then $x z=\left.o^{P-j}\right|^{P} 1^{P} O^{p} \notin L^{\prime \prime}$

$$
L^{\prime \prime}=\left\{\omega \omega^{R} \mid \omega \in 40,13^{*}\right\}
$$

$$
\omega=\alpha_{1} \alpha_{L} \ldots \alpha_{n} \alpha_{n} \ldots \alpha_{2} \alpha_{1}
$$

Theorem 2.20
L is context-free this later \prod^{2}

$$
L=L(m) \text { for rome PDA }
$$

