Sipser Section 2.3 Languages that are not context free

Claim $\hat{L}=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}$ is not context - free
Q: can wi un pumping of some hind
A: yes, bot more complicated
Theorem 2.34
For wry CFL L, then exists $p \in \mathbb{N}$ sit

$$
\begin{aligned}
& \text { For wry CFL } L \text {, then exists } p \text { with }|\omega| \geq p \exists u_{v} \times y_{c}, E^{*} \text { set } \omega=u v x y z \text { and } \\
& \forall \omega \in L \text { wi }
\end{aligned}
$$

(1) $u v^{i} x y^{i} z \in L \quad \forall i \geq 0$
(3) $|\sigma y|>0$
(3) $|v x y| \leq p$

P: As Lisa CFL thincxisto a CFG $G=\left(V_{0}, R_{r} \delta\right)$ in chomsky normal form such that $L=L(G)$
Let $p=2^{|V|+1}$ (pompinglensth)

Soppon $|w| \geq p$ and look at a parntree for a derivation of w in 6

So $\geq 2^{\mid V(t)}$ leaves in T
Thus the height of T is at least $|v| t 2$ as the last step is of the form $A_{i} \rightarrow a$ Let $h(T)$ oc the height of T so $h(T) \geq W \mid+2$
look at a path of length $h(T)$

Examph2.36 $B=\left\{a^{n} b^{n} c^{n}|n \geq 0\rangle\right.$ is nota CFL
P : suppon $L=L(G)$ fora chomolsy grammar $G=(V, \Sigma, R, S)$ and Cet $p=2^{|V|+\mid}$

- We takc $w=a^{P} f^{P} c^{P}$
- adversang shows $w=u v x y z$ with $|v y|>0$ and $|v x y| \leq p$
- We claim that $u v^{0} \times y^{0} z=u \times z \notin L$
aa ...abb...bcc...c
$|v x y| \leq p \Rightarrow$ Cannot have both a and c in vxy
- Canl $v x y \in a^{p} d^{p}$

Then $u \times 2 \notin L$ is it has mon $C^{\prime} s$ Ehan erther a'sor b
$\operatorname{can} 2 \quad v x y \in b^{p} c^{p}$
II)

$$
u \times 2 \notin L(\cos \operatorname{incan} 1)
$$

Conclusion: no matter what partition the adversary tries we find that $u \times 2 \notin L$
so G cannot exist, implying that L is not contexture

Example $2.37 C=\left\{a^{i} b^{j} c^{k} \mid 0 \leq i \leq j \leq k\right\} \begin{aligned} & \text { is not } \\ & \text { a CFL }\end{aligned}$
P : suppon $C=L(G)$ for some chomoky Soppon
grammar $G=(V, \Sigma, R, S)$ and let
$p=I^{\text {IV I }}$
We choon $S=a^{p} b^{p} c^{p}$
adversary: $S=u v x y z$ sit $\left|v_{y}\right|>0$ and $|v x y| \leq P$
observation: neither o nor can contain two different symbols

$$
a a \ldots \underbrace{a b \delta \ldots b c c \ldots c}_{v} \Rightarrow u v^{2} x y^{2} 2 \notin L
$$

Can no a in the sting $r y$

$$
a a \ldots a b b \underbrace{\sum_{v-b} c \ldots c}_{v \times y} \Rightarrow u \times z \notin L
$$

$\operatorname{can} 2$ no b in wy

$$
\underbrace{a a-a d b-S c c \cdot c}_{v \times y} \Rightarrow u v^{2} x y^{2} z \notin L
$$

So the string by contains both an a and a δ

$$
a a-\underbrace{a}_{v} \underbrace{a b d \cdots b c c \cdots c \Rightarrow u v^{2} x y^{2} 2 \notin L}_{x}
$$

Examph $2.38 \quad D=\left\{\omega \omega \mid \omega \in\{0,1\}^{*}\right\}$
Supper $D=L(G)$ for some chomsky $C F G G=(V, \Sigma, R, S)$
We take $s=\underbrace{0^{p} P^{p}}_{w} \underbrace{O_{1}^{p}}_{w}$ when $p=2^{\text {|wit } \mid}$
adversary give us $s=u v x y z$ st $|v y|>0$ and $|v x y| \leqslant p$
If

Then

$$
u v^{2} x y^{2} z \notin L \text { So } 00 \ldots 01 \ldots 1_{1}^{i} \cdot .01 . .1
$$

Now $u \times 2=0^{p} 1^{i} 0^{j} 1^{p}$ for some i, j with

$$
1 \leqslant i+j<2 p
$$

Hence $u \times 2 \notin L\}$

