Equivalence between
PDAs and CFGS
Theorem 2.20
A language L is context-free if and only if L is accepted by some PDA M.
Proof:

* First define a Left moot derivation

This is a derivation of w in which we always replace the leftmost variable symbol A by some $A \rightarrow u \in R$

$$
\begin{aligned}
S \stackrel{*}{\Rightarrow} & u_{1} A v_{1} \Rightarrow u_{1} u v_{1} \\
& q_{\in \Sigma^{*}}
\end{aligned}
$$

Idea: Given a CFG Gs.t $L=L(G)$ we make PDA which Simulates leftmost derivations of strinssin $L(G)$.
We may asoome that G is in Chomsky normal form

1. Place \& on stack and Son top (S is startsymbol of G)

2. Repeat

- If top symbol on stack is a variable A : Select non. Deterministically a rule $A \rightarrow \beta \in R$ and replace A on stack by β (either $A_{1} A_{2}$ or $a \in \sum$)
- If top of stack is some $a \in \sum$: read next input symbol a^{\prime} if $a^{\prime}=a$ remove a fromstack Else reject this branch of the calculation

- If top ot stack is \&: enter accept state
pushing a string on the stack (instead of just on stack symbol)

a, $A \rightarrow A_{1} A_{2}$ implementas

(5)

The PDA M (with squeal states implicit)

emona $2.27 \quad L=L(M)$ for some PDA M
V
$V_{L}=L(G)$ for some context-free grammar 6
proof: more complicated
step 1: Define a restricted PDA

1. One single accept state
2. Always empties stack before accepting a string
3. Every transition either pops one symbol or pushes one symbol

(p) $a_{1} \varepsilon-\rightarrow \varepsilon$ (q)

ζ special symbol
Resulting PDA M^{\prime} satisfies

$$
\begin{aligned}
& \text { Resulting PDA M sahipes } \\
& L\left(M^{\prime}\right)=L(M) \quad M^{l} h a s \text { Many states but } \\
& \text { their number only depends on }
\end{aligned}
$$ their number only depends on M.

Step 2: Understanding how a PDA M Modifies its stack while processing a string w
$1 f$

Then also.

Step 3: The grammar G
For all choices ot states $p, q \in Q(M)$
G will contain a variable App
App will generate all strings $w \in Z^{*}$ such that

Meats ω from input

Same as M cato w frominput

2 possible scenarios when M eats wand goes from state P with stack level l to state of with stack level e and never goes below level l on stack
a) M's stack is at level l initially and after reading w but above level l in between

First step of M is the eat some $a \in \sum_{\varepsilon, 1}$ push some $\alpha \in \Gamma$ on the stack and sotostatior a remains on the stack until the last step when m goes from states to state of whilecating $b \in \Sigma_{\varepsilon}$ and popping a
6) After reading a proper prefix u of w. M is again down to level l on its stack
stack
Again Mstarts by posing
some $\alpha \in \Gamma$ on the stack, but this time α is popped again before we reach the state joust before q (and w is read)

Definition of $G=(V, \Sigma, R, S)$

$$
\begin{aligned}
& V=\left\{A_{p q} \mid p_{1} q \in Q(M)\right\} \\
& S=A_{q_{0} q_{\text {accept }} t}
\end{aligned}
$$

Rules:

- $\forall p, q_{1}, s \in Q(M) \forall t \in \Gamma \forall a, b \in \Sigma_{\varepsilon}:$

If $O \xrightarrow[p]{0, \varepsilon-t} 0$ and $O \xrightarrow{a, t \rightarrow \varepsilon}$
are transitions of M, then add

$$
A_{p q} \rightarrow a A_{r s} \delta \text { to } R
$$

- $\forall p q q r \in Q(y)$ add $A_{p q} \rightarrow A_{p r} A_{r q} h R$
- $\forall p \in Q$ add $A_{p p} \rightarrow \varepsilon$ to R

Claim $2.30 \quad A_{p q} \xrightarrow{*} x=$

Proof induction over \#step) in the derivation

1. Step: Then $p=q$ and $A_{p p} \rightarrow \varepsilon$ as $x \in \Sigma^{*}$ clearly M can so from

without reading anything

p
hypothesis: claim true when $\leq k$ steps in the derivation
consider a derivation couth $k+l$ steps and
look at the first mel und in the denvation
If $A_{p q} \rightarrow a A_{r s} b$ then $x=a y b$ when $A_{r s} \stackrel{*}{\Rightarrow} y$ last dentation has h step, so dy mention

If $A_{p q} \rightarrow a A_{r s}$ then $x=a y b$ when $A_{r s} \stackrel{*}{\Rightarrow} y$ last denvation has k step, so dy valuation

Thess

follow from the fact that $A_{p q} \rightarrow$ a $A_{r s}$ b war added to R

If $A_{p q} \rightarrow$ AprArq then
$x=y z$ when Apr $\neq y$ y in $\leq k$

$$
\begin{aligned}
& \text { Apr } \\
& A_{r 9} \\
& \Rightarrow 2
\end{aligned}\left\{\begin{array}{l}
\text { in } \leq k \\
\text { step }
\end{array}\right.
$$

by induction!

Hence

$$
\left.\frac{C \operatorname{laim} 2.31}{(ㄴ) \mid}\right|_{p} ^{\frac{8}{q}}{ }_{\frac{x}{p}}^{p} \Rightarrow A_{p q} \stackrel{*}{\Rightarrow} x
$$

proof dy induction over \# of steps in m's compotation
o steps: M cannot read anything in o step so $p=q$ and $x=\varepsilon$
By definition of $G \quad A_{p p} \rightarrow \varepsilon$ soda can ok

Assume ($\square \backslash$ holds if M takes $\leq k$ oreo
consider a compotation worth $k+l$ steno
2 cans

1) M computes late this

So $x=a w b \mathrm{cml}$

Hence $\quad A_{p q} \rightarrow$ a $A_{r s} \delta \stackrel{x}{\underset{\text { induction }}{\Rightarrow} \text { a } w b=x}$
2)

M's computation is ot the form

By induction we have

$$
A_{p r} \stackrel{x}{\Rightarrow} y \text { and } A_{r q} \stackrel{x}{\Rightarrow} z
$$

So

$$
A_{p q} \rightarrow A_{p r} A_{r q} \stackrel{*}{\Rightarrow} y A_{r q} \stackrel{*}{\Rightarrow} y z=x
$$

Claims $2.30+2.31$ imply that $S=A_{q_{0} q_{\text {accept }}} \stackrel{*}{\Rightarrow} \omega \Leftrightarrow M$ accepts ω

