Sipger Section 3.2 (firs tart)
Different Tuning machine models
Mode (1: Several tapes

tapis

NB: \# tapes is fixed (so k fora k-tape $T M$)
tack D
Transition function:

$$
\begin{array}{r}
\delta\left(q_{1}, a_{1}, a_{2}, \ldots, a_{k}\right)=\left(p, b_{1}, b_{2}, \ldots, b_{k}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{k}\right) \\
\uparrow \\
b_{i} \text { replaces } \gamma_{j} \in R_{1}, q_{2} s \mid \\
a_{i} \text { whin } \\
\text { head moves }
\end{array}
$$

Why unfol with reveral tapes?
ex copy on a 2-tape TM:

$$
\begin{aligned}
& \stackrel{\Delta \omega_{1} \omega_{L} \cdots \omega_{n}}{\Delta} \leadsto \begin{array}{l}
\Delta \omega_{1} \omega_{L} \cdot \omega_{n} \underline{L} \\
\Delta \omega_{1} \omega_{L} \cdot \omega_{n}
\end{array} ~
\end{aligned}
$$

$~)$

$$
\begin{aligned}
& \nabla w_{1} w_{L} \cdot w_{n} w_{1} \cdots w_{n} \\
& \Delta w_{1} \cdots w_{n}
\end{aligned}
$$

$$
\sim \Delta w_{1} w_{L} \cdots w_{n} w_{1} w_{L} \ldots w_{n}
$$

$O(|w|)$ stefo
We saw how to do this in $O\left(|w|^{2}\right)$ stegs ona 1-tapi TM

Model 2-way ∞-tape

Moll 3 Non-deterministic TM (NDTM)
loonly: NDTM's can guess
from a state of on a symbol $a \in \sum$ we may have up to $B=|Q| \cdot|\Gamma| \cdot 3$ different transitions

Example when non-determinism is untull:
Given integer $n>1$; docs there exist integes $n_{1}, n_{2}>1$ such that $n=n_{1} \cdot n_{2}$ (is n composite?)
A non-deterministic $T M M$ can 'gus' two integer $n_{1}, n_{2}>1$, calculate $m=n_{1} \cdot n_{2}$ and then check whether $m=n$

Model 4 : One tape with several heads

Initially all heads in leftmost position

$$
L=\left\{a^{n} b^{n} c^{n} \mid n \geq 0\right\}
$$

1. check that input is of the form $a^{*} b^{*} c^{*}$ (using one head) reject if not the can
 $\begin{array}{lll}h_{1} & h_{2} & h_{3}\end{array}$
move each head liter forward unhl h_{3} reaches' ' L ' and check whether $\# a=\# b<\# C$

Model 5 2-dimmsionaltape ∞
\uparrow

Many mon models possidh, including combinations of the above (e.9 N DTM with several tapes and several heads on each tape.?
Our goal: prove that none of then models are strange than a standard deterministic one-tape TM In particular, if $L=L(M)$ for M booing es. a k-tape $T M$ then standard TM m' such that $L=L\left(m^{\prime}\right)$

Simulating a 3-tape TM on a 1-tape deterministic TM

red dot indicates the positions of
the 3 heads of M.
w_{c} remands them $v i a$ special chavactes
Simulation idea! to simulate I step of m, m^{\prime}

1. starts with its heal in leftmost position
2. Then mourn forward until it has found content un or each reading head
3. Move had to lett most position
4. move fircoard and modify thu tape cell under each had and move this R, Lois
5. Go to 1. (to start simulating mart stepotm)

Note that if M is moving into blank area (${ }^{\prime} \omega^{l}$'s,) on one of ot s tapes, we need to make space on m's tape for this shift this part onestef right I. \qquad
$|\dot{a}| \#|c| d|\dot{0}| \cdots|\#| \cdots$
m wantstomore night on tape (say)

$$
\int \operatorname{Rashift}^{\substack{u_{1} \cdots u_{q} v_{1}-\cdots v_{m} u v \\ u_{1} \cdots u_{q} \cup v_{1} \cdots v_{m} u v}}
$$

$|a| \dot{u}|\#| c|d| \dot{c}|\cdots| \# . .$.
one execution of Ryshit take $O\left(\left|w^{\prime}\right|\right)$ when w^{l} is string from head position to empty tape.
This is at most \#oteps fatien so far ob m

How do we implement this simulation idea?
assume M is a k-tape $T M$
For each state q_{i} of M we have

- states $q_{\left(\alpha_{1}, \alpha_{2-}, \alpha_{k}\right)}^{i}$ when $\left.\left.\alpha_{i} \in \Gamma_{0}\right\}-\right\}$
- states $P_{\left(\delta, \delta_{2} \ldots, s_{4}, b_{1}, b_{2}, \ldots b_{4}, \gamma_{1}, \gamma_{2} \ldots \gamma_{u}\right)}$
where $\left.\delta_{i} \in \Gamma u\right\}-\left\{, \delta_{i} \in \Gamma, \gamma_{i} \in\{R, L, S\}\right.$
Meaning of then states:
- When we are in state $q^{i}\left(\beta_{1, \beta}, \ldots, \beta_{1},-1, \ldots\right)$ we have collected the symbols currently undo the heads on the first r tapes
- In state $p_{\left(b_{1}, \ldots b_{q}, \ldots, \ldots, b_{1}, b_{2} \ldots, b_{k}, \gamma_{1}, \gamma_{2}, \ldots, \gamma_{l}\right)} w_{c}$ have modificel the tape cells under the first of heads and move the isth head $i \leq g$ according to γ_{i} (possibly shafting part of the tape)
Note M has a HUGE \# of states, BUT it is at most some finch function $f(k, \Gamma, Q)$

Implementing one ster $\delta\left(q_{i}, a_{1}, q_{2}, \ldots q_{h}\right)=\left(q_{j}, b_{1}, b_{2}, \ldots, b_{l}, \gamma_{1}, \gamma_{2}, \ldots \gamma_{k}\right)$

1. m^{\prime} starts in state $q_{(-1,-\ldots-)}^{i}$ at leftmost part -f tape
2. In state $q_{\left(a_{1, \ldots}, a_{r}, \ldots\right)}^{i} \quad r<l \quad m^{\prime}$ moves its head forward to copy content under $m^{\prime} s(r+1)$-head

$q_{\left.\left(a, 1, a_{2}, \ldots\right)^{-}\right)}^{i}$
suit to state $q^{i}\left(a, a_{2}, a_{3}, \ldots, \ldots\right)$
3. when we reachastate $q_{\left(a_{1}, q_{2}, \ldots, q_{k}\right)}^{i} \quad \beta_{i} \in M$ we have collected all character) under μ^{\prime} 's heads Move to state $\left.p_{(-, \ldots,-,}^{j}, b_{1}, \ldots, b_{l}, \gamma_{1}, \ldots, \gamma_{l}\right)$ becaun of (*)
4. Instate $\left.P_{\left(b_{1}, ., b_{5}, \ldots, b_{1}, b_{2}, \ldots\right)}^{j} b_{4}, \gamma_{1}, \gamma_{2}, ., \gamma_{4}\right) \quad s<k$

- Move to position of the $(\Sigma+1)^{\prime} s t$ head
- replace asti by bott (according to (世)) and move 'h accad' sit according to $\gamma_{s t l}$
 els move head to leftmost position and so to state $\left.q_{(-, . .,-)}^{j}\right)$

Running time for simulation
Suppon M takes t steps on input $\omega,|w|=n$
Then the ingot tape can contain at most $n+t$ syonbols \neq ' w '
and all other tapes at most t symbols $\neq L^{\prime}$ (M writesat most one symbol on each tape in each stop)

- Simulating one step where no shift right

- Possible extra time to shift partrof tape to the right:

$O((k-1) t+\ldots+t)=O\left(k^{2} t\right)$ we ignore the k- l'\#'s
- Total work for simulates one ste 8

$$
O(n+k t)+O\left(k^{2} \epsilon\right)=O\left(n+k^{2} t\right)
$$

- Total work for simulation t steps
$O\left(n \cdot t+k^{2} t^{2}\right)$
polynomial in n and t (k is fixed)

