Variants of Toning machines part 2 Nondeterministic TM (NDTM)

$$
\delta: Q \times \Gamma \rightarrow P(Q \times \Gamma \times 3 L, R, S\})
$$

important: each $\delta(q, a)$ contains a finch numbs B of possible transitions when $B \leq|Q| .|\Gamma| .3$
The compotation of a NDTM Monastringw can be viewed as a tree

each path P from the root ceres ponds to a specific choice for each of the $|P|$ states

Definition The NDTM m recognizes L if $L=\{\omega l \nexists$ some compotation for Mon ω leading to M^{\prime} s accept state $\}$

Definition The NDTM M decides L If $\forall \omega \in \Sigma^{*}$: 1) $\exists k=K(m, \omega)$ s.t M never takes mon than K stepson ω (all path, from root have length $\leq K$)
2) $w \in L \Leftrightarrow M$ has at least one accephus calculationonw

Theorem 3.16
For every NDTM M then exists a deteranimistic TM D such that
a) $L(D)=L(M)$ and b) $D \operatorname{decides} L \Leftrightarrow M$ decides L
proof idea: Simulate M^{\prime} 's possible calculations on ω in a Breath-First manner (DES strategy does not work, dec to possible co- paths in compotation tree)
Recall that $S_{m}(q, a)$ has at most B values (of the form $(p, b, 8)$

- posorbhactions instal 1
let $B=\max \{|\delta(q, q)| \mid q \in Q, a \in \Gamma\}$
So B is the maximum \# of different tremsitions M has from any state on any symbol
Assumption: Every $\delta(q, s)$ has exactly B transitions or nom at all
can achieve this by adding copies of one of the transitions

$$
\begin{aligned}
& B=4 \quad J(q, a)=\{(q, b, R),(p, c, L)\} \\
& \vdots \\
& \delta(q, a)=\left\{\left(q^{\prime}, b, R\right),(p, c, L),(p, c, L),(p, c, L)\right\}
\end{aligned}
$$

Now we can describe M's calculations Via stringrof numbs in ban $B+1$ (n ozero's)

For a given string $g_{1} g_{2}, \ldots g_{k} \quad g_{c} \in\{1,2, \ldots, B\}$
We can simulate the corresponding computation of M by taking the gie choice instep i
Conclusion: If we can implement the Simulation above via a DTM D, then
D satisfic, a) and 6) in Theorem 3.16 In particular $L(D)=L(m)$
How to grenemh numbers like 237 and in which order?
un lexicographic ordering on strings of the samelensth $237<239$
and $237<1117$ as lett part is shorter Simple way to keep track of numbers and generate next

$$
\begin{array}{cc}
\# 00 \# 000 \# 00000 \# & B=6 \\
23 & 5
\end{array}
$$

next is
\#00\#000\#000000\# 236

The Toringmachime D:
3 tapes \#w, $w_{2} \cdots \omega_{n}$
\# M's calculation on ω
\# numbers ban B+1
ls \# $\quad \omega_{1} \omega_{2} \cdots \omega_{4}$
\# Simolatim for 3 steps according to \# 235

NB: If the current configuration that M would be in has no transition on for the state M is in an the current symbol it reads, then stop simulating according to the current string on tape 3
Also: if the simulation leads to maccephus then Dol accept

Formally 1. $\Delta \underline{\omega}_{1} \omega_{2} \ldots \omega_{n}$
$\triangleright \sqcup$
D\#O\#
2. Copy tape I to tape 2
3. Simulate m on tape 2 using the nombles on tape 3 to rolect next transition untilaitlu

- dead end = no transition on (q, a)
- M accepts $\Rightarrow D$ accepts(and stops)
- M rejects
- no moredigitsontape 3

4. replace $d_{1} d_{2} \ldots d_{r}$ on tape 3 by
next in lexicographic order
5. Go to 2

How long doe, this simulation take?
Assume M suns for r steps, then D
simulates at most

$$
B+B^{2}+\ldots+B^{r} \leq B^{r+1} \text { steps of } M
$$

Exponential time!

Open question: can we make a def TM D satistrins, a) and 8) in Than 3.16 Such that the rounding time of D is
$O\left(r^{c}\right)$ fiesome constant c when M roans in time $O(r)$ $P=$ NP question later in the conn
Corollam of The 3.16
L is Toringrecognizasle/decidadle \hat{v}
L is recosniad/decided by some NDTM

