
Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

DM553/MM850 – 3. Exam assignment

Hand in by May 7, 2024 at 10:00.

Rules

This is the third of three sets of problems which together with the oral exam in June

constitute the exam in DM553. This set of problems may be solved in groups of up to

three. Any collaboration between different groups will be considered as exam fraud.

Thus you are not allowed to show your solutions to fellow students, not from your

group and you may not discuss the solutions with other groups. On the other hand,

you can learn a lot from discussing the problems with each other so you may do this to

some extend, such as which methods can be used or similar problems from the book or

exercise classes.

It is important that you argue so that the reader can follow your explanations. It is

not enough just to say that the solution follows from an example in the book or similar.

In such a case you should repeat the argument in your own words.

Remember that this counts as part of your exam, so do a good job and try to answer all

questions carefully.

How to hand in your report

Your report should be written in english or danish and must be handed in via It-

slearning by Tuesday May 7 at 10:00.

Hand in one report per group. On the first page you must write the names of all

participants in the group as well as the first 6 digits of your CPR-numbers. Do not

write the last 4 digits!

1

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

Exam problems

Solve the following problems. Remember to justify all answers. If you do not justify

an answer, you may not get any credit for your answer!

PROBLEM 1 (30%)

We say that a set of vertices X in a graph G = (V,E) is a dominating set if every

vertex not in X has at least one edge to a vertex in X . In this problem we study the

following problem which we call the graph domination problem:

Input: a graph G = (V,E) and a natural number r

Question: Does G have a dominating set with at most r vertices?

Question a:

1 2 3

4

5

6

7 8 9

Figure 1: A graph G on 9 vertices.

Let G be the graph in Figure 1. What is the minimum size of a dominating set in G?

You must argue for your claim.

Question b:

Describe a greedy algorithm for finding a dominating set of a given graph. You should

explain why your algorithm is greedy. Then show how your algorithm would work on

the graph G in Figure 1. Does your algorithm find the optimum (smallest possible)

dominating set in G?

Question c:

Argue that the graph domination problem is in NP.

2

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

Let I = ((S,F), k) be an instance of the set-covering problem with F = {S1, S2, . . . , S|F|},

where Si ⊆ S for i = 1, 2, . . . , |F|. Form a bipartite graph G = G(I) whose vertex

set is V = S ∪ U where U = u1, . . . , u|F| has one vertex for each set in F and let G

have the following edges:

• An edge from ui to each s ∈ Si for i = 1, 2, . . . , |F|.

• All possible edges between the vertices in U (so they form a clique).

Question d:

Argue that G(I) can be constructed in polynomial time from I .

Question e:

Argue that G(I) has a dominating of size k if and only if (S,F) has a set-cover of size

k (that is. I is a ’yes’-instance of set-cover).

Question f:

Argue that the graph dominating problem is NP-complete.

Question g:

It is a known (and difficult) result that, unless P=NP, there exist a constant c so that

there is no polynomial c log n-approximation algorithm for set-cover. Another way of

saying this is that, asymptotically, the greedy set-cover algorithm from Cormen has

the assymptotically best possible approximation guarantee we can hope to have for the

set-cover problem.

Explain why this means that there exists a positive real number d such that there is

no d log n-approximation algorithm for the graph domination problem. Hint: show

how to use a given ρ(n)-approximation algorithm for graph domination to obtain a

ρ(n)-approximation algorithm for set-cover.

3

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

PROBLEM 2 (40%)

For each of the following claims you should say whether they are true or false AND

give a short (but sufficient!) explanation for your conclusion. It is not enough to write

that the claim is true or that it is false!

1. If L and L′ are non-trivial members of P , that is, there exist both a ’yes’-instance

and a ’no’-instance for each (so ∅ 6= L,L′ 6= Σ∗), then L ≤p L′.

2. Let L,L′ be optimization problems whose decision versions are NP -complete,

then any k-approximation algorithm for L can be turned into an f(k)-approximation

algorithm for L′ for some finite function f .

3. There exists a polynomial algorithm C which finds a vertex cover of size at most
11

6
times the optimum size of a vertex cover in a given graph G = (V,E) with

max{d(v)|v ∈ V } ≤ 3, where d(v) is the number of edges incident with v in G.

4. There is a 137

60
-approximation algorithm for the special case of the set covering

problem in which all subsets have size at most 5.

5. Every comparison based algorithm for finding the two smallest elements in a set

of n integers must use at least 2n− 3 comparisons in the worst case.

6. Every comparison based algorithm for finding the median of a set of integers

must use at least 150 comparisons to determine the median of some set of 101

integers.

7. The hamiltonian cycle problem can be solved in polynomial time for graphs of

maximum degree 2 (that is, d(v) ≤ 2 for all vertices v ∈ V (G)).

8. If a graph G on n vertices has an independent set of size k, then G has a vertex

cover of size at most n− 2k.

9. Not every problem in NP can be solved in exponential time.

10. The halting problem is NP -complete.

11. Recall that a digraph D = (V,A) is strongly connected if it has a directed path

from x to y for every choice of vertices x, y ∈ V .

Let STRONG = {< D > |D is a digraph which is strongly connected}.

Claim: STRONG ∈ P .

12. Every strongly connected digraph D = (V,A) contains a spanning strong sub-

digraph D′ = (V,A′) with A′ ⊆ A on at most 2|V | − 2 arcs.

13. For every fixed k it is NP-complete to decide whether a given graph G = (V,E)
has a collection of k disjoint cycles C1, C2, . . . , Ck which together cover all its

vertices, that is, V (C1) ∪ V (C2) ∪ · · · ∪ V (Ck) = V .

14. The hamiltonian cycle problem is polynomially solvable for graphs with at most

1010
10

vertices. That is, there exists a polynomial algorithm for deciding whether

such a graph has a hamiltonian cycle.

4

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

15. The decision version of the following problem Q is NP -complete: given a con-

nected graph G = (V,E) with non-negative weights on its edges; find a mini-

mum weight set of edges E′ ⊆ E such that the subgraph G′ = (V,E′) induced

by the edges in E′ is connected.

16. The decision version of problem Q above is polynomial but if we insist that

G′ must be also 2-edge-connected, then it becomes NP -complete (recall that a

graph G is 2-edge-connected if it remains connected after deletion of any edge).

17. There exists no comparison-based sorting algorithm which can sort every set of

n distinct integers while using at most 0.49n log n comparisons.

18. Let LONG CYCLE be the problem: Given as input a graph G = (V,E) and a

natural number k; does G have a cycle of length at least k? Claim: The problem

LONG CYCLE is NP-complete.

19. Does the complexity of LONG CYCLE change if the cycle must have length ex-

actly k?

20. If there exists a polynomial time (1 + 1

n
)-approximation algorithm for vertex

cover in graphs on n vertices, then P=NP.

5

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

PROBLEM 3 (15%)

In this problem we are given a set of n = 2k distinct integers S = {x1, x2, . . . , xn}
and we want to find, the following three elements: the maximum, the minimum and

the 2nd smallest element.

Let Amin,max be an optimal algorithm (so it uses the minimum number of compar-

isons) for finding the minimum and the maximum element of a set of distinct integers.

Let Amin,2min be an optimal algorithm for finding the minimum and the 2nd smallest

element of a set of distinct integers.

Consider the following algorithm A

1. Let L,H = ∅

2. For i = 1 to k:

if x2i−1 < x2i then add x2i−1 to L and x2i to H;

else add x2i to L and x2i−1 to H

3. Use Amin,max to find the maximum and the minimum element ymax, ymin in

H;

4. Use Amin,2min to find the minimum and the second smallest element zmin, z2min

in L;

5. return ymax, zmin and the smallest of ymin, z2min as the maximum, the mini-

mum and the 2nd smallest element of S.

Question a:

Prove that A is correct and determine how many comparisons A makes.

Question b:

Show how to use Amin,2min as a subroutine in an algorithm B which uses fewer com-

parisons than A above. Hint: which elements can be the maximum element?

6

Institut for Matematik og Datalogi

Syddansk Universitet, Odense

April 12, 2024

JBJ

PROBLEM 4 (15%)

This problem is also about lower bounds for comparison based algorithms.

Question a:

Let DUPLICATE be the problem: given a sorted list of integers x1 ≤ . . . ≤ xn; are

there any duplicates, that is, is there an index i such that xi = xi+1. First describe an

algorithm that uses exactly n− 1 comparisons to solve the problem and then show that

every comparison based algorithm for DUPLICATE must use at least n−1 comparisons

on some input of size n.

Question b:

A MERGE of two sorted lists x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤ yn is the operation

that returns one sorted list on the 2n elements. Prove that every comparison based

algorithm A for performing a MERGE of two sorted lists of length n must use at least

2n− 1 comparisons in the worst case.

Hint: explain how an adversary can construct two lists x1 ≤ . . . ≤ xn and y1 ≤ . . . ≤
yn while answering all queries correctly so that it can force the algorithm A to use

2n− 1 comparisons before it knows the correct sorted order. Hint: think of an input to

the merging part of Mergesort that will require 2n− 1 comparisons.

7

