Eksamensopgaver i DM17, Januar 2002

Problem No. 1 (20 points)

Find a regular expression representing the following languages:
a) $L:=\left\{w \in\{a, b\}^{*} \mid w\right.$ has an odd number of occurences of $\left.a\right\}$.
b) $L:=\left\{w \in\{a, b\}^{*}| | w \mid \geq 3\right.$ and the third symbol from the right is the letter $b\}$.

Consider the regular language L over $\{0,1\}$ which is represented by the regular expression $(0 \cup 1)^{*} 0$.
c) Draw the state diagram of a nondeterministic finite automaton which precisely accepts L. The automaton should not be a deterministic one.
d) Draw the state diagram of a deterministic finite automaton which precisely accepts L.

Problem No. 2 (10 points)

Let Σ be a finite alphabet and let $L \subseteq \Sigma^{+}$be a regular language. Define a new language \tilde{L} as the language of all words $w \in \Sigma^{*}$ such that w is obtained from a word in L by deleting its first letter. Is the language \tilde{L} regular as well? Prove your answer.

Problem No. 3 (20 points)

Let the language $L \subset\{0,1\}^{*}$ be defined as

$$
L:=\left\{01^{j} \mid j \in \mathbb{N} \text { such that there is a } k \in \mathbb{N} \text { with } j=k!\right\} .
$$

For example, the words $01,011,0111111$ etc. are in L.
We want to prove that L is not regular.
a) Show that using the Pumping Lemma the question whether L is not regular can be reduced to the following problem: for any two natural numbers $a, b \in \mathbb{N}$ not all the numbers of the form

$$
a+n \cdot b, n \in \mathbb{N}
$$

are factorials of a natural number.
b) Prove that a) is true, i.e. given any two natural numbers $a, b \in \mathbb{N}$ show that there is a choice for $n \in \mathbb{N}$ such that $a+n \cdot b$ is not of the form k !, no matter how we choose $k \in \mathbb{N}$.

Problem No. 4 (20 points)

a) Consider the context-free grammar $G=(V, \Sigma, S, R)$, given by $V:=\{S, A, B, a, b\}, \Sigma:=\{a, b\}$ and

$$
\begin{aligned}
R:= & \{S \rightarrow A B, S \rightarrow B a, \\
& A \rightarrow a, A \rightarrow a b A S, A \rightarrow b A a, \\
& B \rightarrow b, B \rightarrow b S S, B \rightarrow a S B B\}
\end{aligned}
$$

Prove that all words in $L(G)$ contain the same number of occurences of the letters a and b.
b) Consider the context-free language

$$
L:=\left\{a^{n} b^{n} \mid n \geq 1\right\} \cup\left\{a^{n} b^{2 n} \mid n \geq 1\right\}
$$

over $\Sigma=\{a, b\}$.
Write down a Pushdown automaton M which precisely accepts L. This includes the definition of a transition table. Explain the way your PDA works.

Hint for b): To simplify the task your PDA is allowed to write in a single step several symbols onto the stack (but it can read only one at a time).

Problem No. 5 (15 points)

A function $f:\{a, b\}^{+} \rightarrow\{a, b\}^{+}$is given as follows: For input $x \in$ $\{a, b\}^{+}$we define $f(x)$ as the word which is obtained by replacing every occurence of the substring $a b$ in x by the string $a a$.
For example:

$$
\begin{aligned}
f(a a b) & =a a a \\
f(a b b a b b) & =a a b a a b
\end{aligned}
$$

Give the full description of a Turing machine which for every input $x \in\{a, b\}^{+}$replaces x by $f(x)$ and stops (in a final state) on the right-most symbol of $f(x)$.
Explain your solution, i.e. explain the way your machine works.

Problem No. 6 (15 points)

Let Σ be a fixed finite alphabet with $|\Sigma| \geq 2$.
For each of the following problems over Σ find out, whether they are decidable or not. You have to argue precisely, why your answer is correct.
a) Input: the encoding of a Turing machine M

Question: does M accept at least one word of length 1?
b) Input: the encoding of a Turing machine M

Question: does M have a transition rule whose application does not change the state?
c) Input: the encoding of a Turing machine M

Question: is the language accepted by M the complement of the halting problem, i.e. does $L(M)=\overline{H A L T}$ hold?

