Why Probability in Computing?

e Almost any advance computer application today has some
randomization /statistical components:

Network security

Cryptography

Web search and Web advertising

Spam filtering

Recommendation systems Amazon, Netfix,..

Machine learning

Communication protocols

Computational finance

System biology

DNA sequencing



Probability in Discrete Mathematics

Random graphs approximate large graphs well

Existence proofs

Probabilistic proofs can often be “derandomized”, leading to
algorithms.

Randomized rounding of LP solutions often leads to simple
approximation algorithms.



Probability and Computing

e Randomized algorithms - random steps help!

e Probabilistic analysis of algorithms - average case, almost
always case, worst case.

e Statistical inference - Machine learning, data mining...



Course Outline

Basic (discrete) probability theory, moments, tail bounds.
Randomized algorithms, probabilistic analysis, average and
almost sure performance.

Universal Hash functions.

Random graphs

The probabilistic method

Generating random objects (e.g. spanning trees,
permutations)

Use of randomness in communication protocols.

Exact algorithms based on derandomizing a randomized
algorithm.

Randomized approximation algorithms.

Random walks - Markov chains.

The Monte-Carlo method.

Applications: sorting, selection, routing, graph algorithms,...
Entropy, Randomness, and Information
Dealing with dependencies: Martingales



Verifying polynomial equivalence

Given polynomials F(x) and G(x) both of degree d, where F(x) is
given as F(x) = N%_;(x — a;) and G(x) is given by its canonical
form G(x) = 27:0 cix', we want to verify

F(x) = G(x)



Verifying polynomial equivalence

Given polynomials F(x) and G(x) both of degree d, where F(x) is
given as F(x) = N2, (x — a;) and G(x) is given by its canonical
form G(x) = Zf{:o cix', we want to verify

F(x) = G(x)

standard method: convert F(x) to its cannonical form
F(x) = %, bix" and check whether b; = ¢; for i = 0,1, ..., d.
Takes O(d?)operations.



Randomized approach:
@ Pick r uniformly at random in {1,2,...,100d}.
® Calculate F(r) and G(r) in O(d) time.
®© If F(r) # G(r) return 'No'; otherwise return 'Yes'

The probability that the algorithm fails is at most ﬁ = ﬁ:

F(x)— G(x) is a polynomium of degree at most d and thus, by the
fundamental theorem of algebra, it has at most d distinct roots.



e Our algorithm may fail, but only if it (wrongly) returns 'Yes'.
e We can decrease the error probability in two ways:

(a) By using a larger interval, say {1,2,...,1000d}. Now the
error probability is at most 1.

(b) By running the algorithm k times (in time O(kd). Since the
out-come in one run is independent of the other runs, the
probability that they all answer 'Yes' for an input with
F(x) # G(x) is at most ;5.

Method (b) is often preferable as it requires only 5 runs to

decrease the error probability to 1071°. We could achieve the
same probability by chooing r (sampling) from

{1,2,...,10000000000d}, but if d is large it may be difficult

to work with integers from such a big range.



Veritying Matrix Multiplication

Given three n x n matrices A, B, and C in a Boolean field, we
want to verify

AB = C



Veritying Matrix Multiplication

Given three n x n matrices A, B, and C in a Boolean field, we
want to verify

AB = C.

Standard method: Matrix multiplication - takes ©(n®) (©(n*3"))
operations.



Randomized algorithm:
® Chooses a random vector 7 = (r1, 12, ..., r,) € {0,1}".
® Compute BT,
©® Compute A(BF);
® Computes Cr;
@ If A(BF) # C7 return AB # C, else return AB = C.
The algorithm takes ©(n?) time.

Theorem
If AB # C, and 7 is chosen uniformly at random from {0,1}", then

Pr(ABF = CF) <

N —



Probability Space

A probability space has three components:

@ A sample space €2, which is the set of all possible outcomes
of the random process modeled by the probability space;

® A family of sets F representing the allowable events, where
each set in F is a subset of the sample space ©;

©® A probability function Pr: F — R, satisfying the definition
below.

An element of Q is a simple event. In a discrete probability space
we use F = 2%,



Probability Function

A probability function is any function Pr: 7 — R that satisfies
the following conditions:

@ For any event £, 0 < Pr(E) < 1,

® Pr(Q) =1,

© For any finite or countably infinite sequence of pairwise
mutually disjoint events Eq, Ep, E3, ...

PrilJE | =D Pr(E).

i>1 i>1

The probability of an event is the sum of the probabilities of its
simple events.



Independent Events

Definition
Two events E and F are independent if and only if

Pr(ENF) = Pr(E)-Pr(F).

More generally, events Ei, Ep, . .. E; are mutually independent if
and only if for any subset / C [1, k],

Pr (ﬂ E,-) = []Pr(E).

iel i€l



Conditional Probability

We have two coins, coin A is a fair coin, coin B has probability 2/3
to come up HEAD. We chose a coin at random and got HEAD.
What is the probability that we chose coin A?

E1 = the event " Chosen coin A".

E> = the event "outcome is HEAD".

The conditional probability that we chose coin A given that the
outcome is HEAD is denoted

Pr(E1 ‘ E2)



Computing Conditional Probabilities

Definition
The conditional probability that event E; occurs given that event
E; occurs is

Pr(E1 N Eg)

Pr(E1 | E2) =
(| &) Pr(E)
The conditional probability is only well-defined if Pr(E;) > 0.

By conditioning on E; we restrict the sample space to the set E».
Thus we are interested in Pr(E; N Ey) “normalized” by Pr(Ez).



Example - a posteriori probability

We are given 2 coins. One is a fair coin A, the other coin, B has
probability 2/3 for HEAD.

We choose a coin at random, i.e. each coin is chosen with
probability 1/2.

Given that we got head, what is the probability that we chose the
fair coin A?77



Define a sample space of ordered pairs (coin, outcome).
The sample space has four points

{(A h), (A, 1), (B, h), (B, 1)}

Pr((A, h)) = Pr((A,t)) = 1/4
Pr((B,h)) =1/2%2/3=1/3
Pr((B,t)) =1/2%1/3=1/6

Define two events:
E; = “Chose coin A”.
E> = "Outcome is head”.

Pr(ElﬂE2) 1/4

Prifs | B2) = Pr(E)  1/411/3

=3/7.



Veritying Matrix Multiplication

Randomized algorithm:
@ Chooses a random vector 7 = (ry, 12, ..., r,) € {0,1}".
® Compute BT,
® Compute A(B7);
® Computes Cr;
O If A(B7) # CF return AB # C, else return AB = C.
The algorithm takes ©(n?) time.

Theorem
If AB # C, and 7 is chosen uniformly at random from {0,1}", then

Pr(ABF = CF) <

N =



Lemma
Choosing 7 = (r1, 12, ..., r,) € {0,1}" uniformly at random is
equivalent to choosing each r; independently and uniformly from

{0,1}.

Proof.

If each r; is chosen independently and uniformly at random, each
of the 2" possible vectors 7 is chosen with probability 27", giving
the lemma. ]




Proof:

Let D=AB — C # 0.

ABT = Cr implies that D7 = 0.

Since D # 0 it has some non-zero entry; assume di1.
For D¥ = 0, it must be the case that

Z dljrj = 0,
Jj=1

or equivalently

Here we use di; # 0.



Principle of Deferred Decision

Assume that we fixed ro, ..., r,.

The RHS is already determined, the only variable is ry.

n
B ijz dijrj
di1

rn =

Probability that r; = RHS is no more than 1/2.



More formally, summing over all collections of values
(X0, X3, %4, ..., X,) € {0,117, we have

IA

IN

Pr(ABF = CF)
> Pr(ABF =CF | (r,..., 1) = (X2, ..., %))

(x2,...,xn)€{0,1}n—1
“Pr((r2,...,m)=(x2,...,xn))
> Pr((ABF = CF) N ((r2,-.., 1) = (32, .-, Xn)))

(%210 o) €40,1}0—1

’,’_2d1jrj
E Pr<<r1_zjfdu)m((rg,...,rn)—(X2,~-~

(x2,---»xn)€{0,1}7—1

1 dijr
Z Pr<r1zzj;“)-Pr((rg,,..,rn)(xz,...
11

(X25---s xp)€{0,1}n—1

3 %Pr((rg,...,rn) — G x))

(x2,.-xn)€{0,1}7 1



Theorem (Law of Total Probability)

Let E1, B>, ..., E, be mutually disjoint events in the sample space
Q, and U?_E; = Q, then

Pr(B) = z”: Pr(BNE;) = z": Pr(B | Ei) Pr(E;).
i=1 i=1

Proof.

Since the events E;, i = 1,..., n are disjoint and cover the entire
sample space 2,

Pr(B) = 2”: Pr(BNE;) = z”: Pr(B | E;) Pr(E;).
i=1 i=1



Smaller Error Probability

The test has a one side error, repeated tests are independent.

e Run the test k times.

e Accept AB = C if it passed all k tests.

The probability of making a mistake is < (1/2)%.




Bayes' Law

Theorem (Bayes' Law)

Assume that E1, E». . . ., E, are mutually disjoint sets such that
U?:lEi = (), then

Pr(E; N B) Pr(B | E;) Pr(E))
Pr(E; | B) = PrJ(B) - S Pr(BJ\ E;) Pjr(Ei).




Application: Finding a Biased Coin

e We are given three coins, two of the coins are fair and the

third coin is biased, landing heads with probability 2/3. We
need to identify the biased coin.

e We flip each of the coins. The first and second coins come up
heads, and the third comes up tails.

e What is the probability that the first coin is the biased one?



Let E; be the event that the /-th coin flipped is the biased one, and
let B be the event that the three coin flips came up heads, heads,
and tails.

Before we flip the coins we have Pr(E;) =1/3 for i =1,...,3, thus

Pr(B\El):Pr(B\Eg):g-%~%:%,
and 111 1
PrBIB) =553 10
Applying Bayes' law we have
Pr(B | E1) Pr(E1) 2

P& B) = Sa o B E)PrE) 5

The outcome of the three coin flips increases the probability that
the first coin is the biased one from 1/3 to 2/5.



Bayesian approach

e Start with an prior model, giving some initial value to the
model parameters.

e This model is then modified, by incorporating new
observations, to obtain a posterior model that captures the
new information.



Example: randomized matrix multiplication test

e We want to evaluate the increase in confidence through
repeated tests.

e If we have no information about the process that generated
the identity, a reasonable prior assumption is that the identity
is correct with probability 1/2.

e If we run the randomized test once and it returns that the
matrix identity is correct, how does it change our confidence
in the identity?



Let E be the event that the identity is correct, and let B be the
event that the test returns that the identity is correct.

We start with Pr(E) = Pr(E) = 1/2, and since the test has a one
side error bounded by 1/2, we have Pr(B | E) =1, and

Pr(B | E)<1/2.

Applying Bayes' law we have

Pr(B | E)Pr(E)
Pr(B | E)Pr(E)+ Pr(B | E)Pr(E)
N 1/2
= 1/241/2-1/2

Pr(E" | B)

—2/3.



e Assume now that we run the randomized test again and it
again returns that the identity is correct.

o After the first test, the prior model was revised, so
Pr(E) > 2/3, and Pr(E) <1/3.

e Pr(B|E)=1and Pr(B | E) <1/2.
Applying Bayes' law we have

/ 2/3 _
PUE | B) 2 5o a3 = 415



In general, if before running the test our prior model is that
Pr(E) > 2'/(2" 4 1), and the test returns that the identity is
correct (event B), then

z 2i1 1
Pr(E' | B) > — Zel ==l T
1 22/+1 T +

Thus, if all 100 calls to the matrix identity test return that the
identity is correct, then our confidence in the correctness of this

identity is at least 1 — 210°+1



2 »1 37
C .,‘,\

Source: On the history of the transportation and maximum flow problems.
Alexander Schrijver in Math Programming, 91: 3, 2002.



Min-Cut Algorithm

Input: An n-node graph G.
Output: A minimal set of edges that disconnects the graph.

® Repeat n — 2 times:

@ Pick an edge uniformly at random.
@® Contract the two vertices connected by that edge, eliminate all
edges connecting the two vertices.

® Output the set of edges connecting the two remaining vertices.



Theorem

The algorithm outputs a min-cut set of edges with probability
2

= n(n—1)"

Lemma

Vertex contraction does not reduce the size of the min-cut set.
(Contraction can only increase the size of the min-cut set.)

Proof.

Every cut set in the new graph is a cut set in the original
graph. [



Analysis of the Algorithm

Assume that the graph has a min-cut set of k edges.
We compute the probability of finding one such set C.

Lemma

If the edge contracted does not belong to C, no other edge
eliminated in that step belongs to C.

Proof.

A contraction eliminates a set of parallel edges (edges connecting
one pair of vertices).
Parallel edges either all belong, or don't belong to C. O



Let E£; = "the edge contracted in iteration / is not in C."

Let F; = ﬂj-zlEj = "no edge of C was contracted in the first /
iterations”.

We need to compute Pr(F,_»)



Since the minimum cut-set has k edges, all vertices have degree
> k, and the graph has > nk/2 edges.
There are at least nk/2 edges in the graph, k edges are in C.

Pr(Ey)=Pr(F)>1—- 2t =1-2.



Assume that the first contraction did not eliminate an edge of C
(conditioning on the event E; = ).

After the first vertex contraction we are left with an n — 1 node
graph, with minimum cut set, and minimum degree > k.

The new graph has at least k(n — 1)/2 edges.

Pr(Ex | F)>1— K > 1 -2

(D2 =+ a1
Similarly,
Pr(E; | F;_1)21—W:1_#'+1‘



We need to compute
Pr(Fn,z)

We use
Pr(ANB) = Pr(A | B)Pr(B)

Pr(Fn_g) =
Pr(En,g N Fn,3) = Pr(En,2 | Fn,3)Pr(Fn,3) =

Pr(En_2 ‘ F,,_3)Pr(E,,_3 | F,,_4)....Pr(E2 | F1)Pr(F1) Z

2 n—i—1
>N (1-——— =N (—
- '—1< n—i+1> ’—1<n—i+1)

(")) G2) -6 GG G) =y




Useful identities:

Pr(AN B)

Pr(A| B) = Pr(B)

Pr(AN B) = Pr(A | B)Pr(B)

Pr(ANBNC) = Pr(A| BN C)Pr(BNC)
= Pr(A| BN C)Pr(B | C)Pr(C)

Let A1, ...., A, be a sequence of events. Let E; = ﬂ}zl A;

Pr(E,) = Pr(An | En—1)Pr(En—1) =

Pr(A,, | E,,_l)Pr(A,,_l ‘ En_z)....P(Ag ’ E1)Pr(E1)



Theorem

Assume that we run the randomized min-cut algorithm

n(n — 1) log n times and output the minimum size cut-set found in
all the iterations. The probability that the output is not a min-cut
set is bounded by

=N
17L n(n )Ogn<efz|ogn:i
n(n—1) - n?’

Proof.

The algorithm has a one side error: the output is never smaller
than the min-cut value. [



The Taylor series expansion of e gives

2

X
x_1_ X<
e =1 x—|—2! ......

Thus, for x < 1,

1—x<e™.



