
Why Probability in Computing?

• Almost any advance computer application today has some
randomization/statistical components:
• Network security
• Cryptography
• Web search and Web advertising
• Spam filtering
• Recommendation systems Amazon, Netfix,..
• Machine learning
• Communication protocols
• Computational finance
• System biology
• DNA sequencing



Probability in Discrete Mathematics

• Random graphs approximate large graphs well

• Existence proofs

• Probabilistic proofs can often be “derandomized”, leading to
algorithms.

• Randomized rounding of LP solutions often leads to simple
approximation algorithms.



Probability and Computing

• Randomized algorithms - random steps help!

• Probabilistic analysis of algorithms - average case, almost
always case, worst case.

• Statistical inference - Machine learning, data mining...



Course Outline

• Basic (discrete) probability theory, moments, tail bounds.
• Randomized algorithms, probabilistic analysis, average and

almost sure performance.
• Universal Hash functions.
• Random graphs
• The probabilistic method
• Generating random objects (e.g. spanning trees,

permutations)
• Use of randomness in communication protocols.
• Exact algorithms based on derandomizing a randomized

algorithm.
• Randomized approximation algorithms.
• Random walks - Markov chains.
• The Monte-Carlo method.
• Applications: sorting, selection, routing, graph algorithms,...
• Entropy, Randomness, and Information
• Dealing with dependencies: Martingales



Verifying polynomial equivalence

Given polynomials F (x) and G (x) both of degree d , where F (x) is
given as F (x) = Πd

i=1(x − ai ) and G (x) is given by its canonical

form G (x) =
∑d

i=0 cix
i , we want to verify

F (x) ≡ G (x)



Verifying polynomial equivalence

Given polynomials F (x) and G (x) both of degree d , where F (x) is
given as F (x) = Πd

i=1(x − ai ) and G (x) is given by its canonical

form G (x) =
∑d

i=0 cix
i , we want to verify

F (x) ≡ G (x)

standard method: convert F (x) to its cannonical form
F (x) =

∑d
i=0 bix

i and check whether bi = ci for i = 0, 1, . . . , d .
Takes O(d2)operations.



Randomized approach:

1 Pick r uniformly at random in {1, 2, . . . , 100d}.
2 Calculate F (r) and G (r) in O(d) time.

3 If F (r) 6= G (r) return ’No’; otherwise return ’Yes’

The probability that the algorithm fails is at most d
100d = 1

100 :
F (x)−G (x) is a polynomium of degree at most d and thus, by the
fundamental theorem of algebra, it has at most d distinct roots.



• Our algorithm may fail, but only if it (wrongly) returns ’Yes’.

• We can decrease the error probability in two ways:

(a) By using a larger interval, say {1, 2, . . . , 1000d}. Now the
error probability is at most 1

1000 .
(b) By running the algorithm k times (in time O(kd). Since the

out-come in one run is independent of the other runs, the
probability that they all answer ’Yes’ for an input with
F (x) 6≡ G (x) is at most 1

100k .

Method (b) is often preferable as it requires only 5 runs to
decrease the error probability to 10−10. We could achieve the
same probability by chooing r (sampling) from
{1, 2, . . . , 10000000000d}, but if d is large it may be difficult
to work with integers from such a big range.



Verifying Matrix Multiplication

Given three n × n matrices A, B, and C in a Boolean field, we
want to verify

AB = C.



Verifying Matrix Multiplication

Given three n × n matrices A, B, and C in a Boolean field, we
want to verify

AB = C.

Standard method: Matrix multiplication - takes Θ(n3) (Θ(n2.37))
operations.



Randomized algorithm:

1 Chooses a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n.

2 Compute Br̄ ;

3 Compute A(Br̄);

4 Computes Cr̄ ;

5 If A(Br̄) 6= Cr̄ return AB 6= C, else return AB = C.

The algorithm takes Θ(n2) time.

Theorem

If AB 6= C, and r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤ 1

2
.



Probability Space

Definition

A probability space has three components:

1 A sample space Ω, which is the set of all possible outcomes
of the random process modeled by the probability space;

2 A family of sets F representing the allowable events, where
each set in F is a subset of the sample space Ω;

3 A probability function Pr : F → R, satisfying the definition
below.

An element of Ω is a simple event. In a discrete probability space
we use F = 2Ω.



Probability Function

Definition

A probability function is any function Pr : F → R that satisfies
the following conditions:

1 For any event E , 0 ≤ Pr(E ) ≤ 1;

2 Pr(Ω) = 1;

3 For any finite or countably infinite sequence of pairwise
mutually disjoint events E1,E2,E3, . . .

Pr

⋃
i≥1

Ei

 =
∑
i≥1

Pr(Ei ).

The probability of an event is the sum of the probabilities of its
simple events.



Independent Events

Definition

Two events E and F are independent if and only if

Pr(E ∩ F ) = Pr(E ) · Pr(F ).

More generally, events E1,E2, . . .Ek are mutually independent if
and only if for any subset I ⊆ [1, k],

Pr

(⋂
i∈I

Ei

)
=

∏
i∈I

Pr(Ei ).



Conditional Probability

We have two coins, coin A is a fair coin, coin B has probability 2/3
to come up HEAD. We chose a coin at random and got HEAD.
What is the probability that we chose coin A?
E1 = the event ”Chosen coin A”.
E2 = the event ”outcome is HEAD”.
The conditional probability that we chose coin A given that the
outcome is HEAD is denoted

Pr(E1 | E2).



Computing Conditional Probabilities

Definition

The conditional probability that event E1 occurs given that event
E2 occurs is

Pr(E1 | E2) =
Pr(E1 ∩ E2)

Pr(E2)
.

The conditional probability is only well-defined if Pr(E2) > 0.

By conditioning on E2 we restrict the sample space to the set E2.
Thus we are interested in Pr(E1 ∩ E2) “normalized” by Pr(E2).



Example - a posteriori probability

We are given 2 coins. One is a fair coin A, the other coin, B has
probability 2/3 for HEAD.
We choose a coin at random, i.e. each coin is chosen with
probability 1/2.
Given that we got head, what is the probability that we chose the
fair coin A???



Define a sample space of ordered pairs (coin, outcome).
The sample space has four points

{(A, h), (A, t), (B, h), (B, t)}

Pr((A, h)) = Pr((A, t)) = 1/4

Pr((B, h)) = 1/2 ∗ 2/3 = 1/3

Pr((B, t)) = 1/2 ∗ 1/3 = 1/6

Define two events:
E1 = “Chose coin A”.
E2 = “Outcome is head”.

Pr(E1 | E2) =
Pr(E1 ∩ E2)

Pr(E2)
=

1/4

1/4 + 1/3
= 3/7.



Verifying Matrix Multiplication

Randomized algorithm:

1 Chooses a random vector r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n.

2 Compute Br̄ ;

3 Compute A(Br̄);

4 Computes Cr̄ ;

5 If A(Br̄) 6= Cr̄ return AB 6= C, else return AB = C.

The algorithm takes Θ(n2) time.

Theorem

If AB 6= C, and r̄ is chosen uniformly at random from {0, 1}n, then

Pr(ABr̄ = Cr̄) ≤ 1

2
.



Lemma

Choosing r̄ = (r1, r2, . . . , rn) ∈ {0, 1}n uniformly at random is
equivalent to choosing each ri independently and uniformly from
{0, 1}.

Proof.

If each ri is chosen independently and uniformly at random, each
of the 2n possible vectors r̄ is chosen with probability 2−n, giving
the lemma.



Proof:

Let D = AB− C 6= 0.
ABr̄ = Cr̄ implies that Dr̄ = 0.
Since D 6= 0 it has some non-zero entry; assume d11.
For Dr̄ = 0, it must be the case that

n∑
j=1

d1j rj = 0,

or equivalently

r1 = −
∑n

j=2 d1j rj

d11
. (1)

Here we use d11 6= 0.



Principle of Deferred Decision

Assume that we fixed r2, . . . , rn.
The RHS is already determined, the only variable is r1.

r1 = −
∑n

j=2 d1j rj

d11
. (2)

Probability that r1 = RHS is no more than 1/2.



More formally, summing over all collections of values
(x2, x3, x4, . . . , xn) ∈ {0, 1}n−1, we have

Pr(ABr̄ = Cr̄)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr (ABr̄ = Cr̄ | (r2, . . . , rn) = (x2, . . . , xn))

· Pr ((r2, . . . , rn) = (x2, . . . , xn))

=
∑

(x2,...,xn)∈{0,1}n−1

Pr ((ABr̄ = Cr̄) ∩ ((r2, . . . , rn) = (x2, . . . , xn)))

≤
∑

(x2,...,xn)∈{0,1}n−1

Pr

((
r1 = −

∑n
j=2 d1j rj

d11

)
∩ ((r2, . . . , rn) = (x2, . . . , xn))

)

=
∑

(x2,...,xn)∈{0,1}n−1

Pr

(
r1 = −

∑n
j=2 d1j rj

d11

)
· Pr ((r2, . . . , rn) = (x2, . . . , xn))

≤
∑

(x2,...,xn)∈{0,1}n−1

1

2
Pr((r2, . . . , rn) = (x2, . . . , xn))

=
1

2
.



Theorem (Law of Total Probability)

Let E1,E2, . . . ,En be mutually disjoint events in the sample space
Ω, and ∪ni=1Ei = Ω, then

Pr(B) =
n∑

i=1

Pr(B ∩ Ei ) =
n∑

i=1

Pr(B | Ei ) Pr(Ei ).

Proof.

Since the events Ei , i = 1, . . . , n are disjoint and cover the entire
sample space Ω,

Pr(B) =
n∑

i=1

Pr(B ∩ Ei ) =
n∑

i=1

Pr(B | Ei ) Pr(Ei ).



Smaller Error Probability

The test has a one side error, repeated tests are independent.

• Run the test k times.

• Accept AB = C if it passed all k tests.

Theorem

The probability of making a mistake is ≤ (1/2)k .



Bayes’ Law

Theorem (Bayes’ Law)

Assume that E1,E2, . . . ,En are mutually disjoint sets such that
∪ni=1Ei = Ω, then

Pr(Ej | B) =
Pr(Ej ∩ B)

Pr(B)
=

Pr(B | Ej) Pr(Ej)∑n
i=1 Pr(B | Ei ) Pr(Ei )

.



Application: Finding a Biased Coin

• We are given three coins, two of the coins are fair and the
third coin is biased, landing heads with probability 2/3. We
need to identify the biased coin.

• We flip each of the coins. The first and second coins come up
heads, and the third comes up tails.

• What is the probability that the first coin is the biased one?



Let Ei be the event that the i-th coin flipped is the biased one, and
let B be the event that the three coin flips came up heads, heads,
and tails.
Before we flip the coins we have Pr(Ei ) = 1/3 for i = 1, . . . , 3, thus

Pr(B | E1) = Pr(B | E2) =
2

3
· 1

2
· 1

2
=

1

6
,

and

Pr(B | E3) =
1

2
· 1

2
· 1

3
=

1

12
.

Applying Bayes’ law we have

Pr(E ′1 | B) =
Pr(B | E1) Pr(E1)∑3
i=1 Pr(B | Ei ) Pr(Ei )

=
2

5
.

The outcome of the three coin flips increases the probability that
the first coin is the biased one from 1/3 to 2/5.



Bayesian approach

• Start with an prior model, giving some initial value to the
model parameters.

• This model is then modified, by incorporating new
observations, to obtain a posterior model that captures the
new information.



Example: randomized matrix multiplication test

• We want to evaluate the increase in confidence through
repeated tests.

• If we have no information about the process that generated
the identity, a reasonable prior assumption is that the identity
is correct with probability 1/2.

• If we run the randomized test once and it returns that the
matrix identity is correct, how does it change our confidence
in the identity?



Let E be the event that the identity is correct, and let B be the
event that the test returns that the identity is correct.
We start with Pr(E ) = Pr(Ē ) = 1/2, and since the test has a one
side error bounded by 1/2, we have Pr(B | E ) = 1, and
Pr(B | Ē ) ≤ 1/2.
Applying Bayes’ law we have

Pr(E ′ | B) =
Pr(B | E ) Pr(E )

Pr(B | E ) Pr(E ) + Pr(B | Ē ) Pr(Ē )

≥ 1/2

1/2 + 1/2 · 1/2
= 2/3.



• Assume now that we run the randomized test again and it
again returns that the identity is correct.

• After the first test, the prior model was revised, so
Pr(E ) ≥ 2/3, and Pr(Ē ) ≤ 1/3.

• Pr(B | E ) = 1 and Pr(B | Ē ) ≤ 1/2.

Applying Bayes’ law we have

Pr(E ′ | B) ≥ 2/3

2/3 + 1/3 · 1/2
= 4/5.



In general, if before running the test our prior model is that
Pr(E ) ≥ 2i/(2i + 1), and the test returns that the identity is
correct (event B), then

Pr(E ′ | B) ≥
2i

2i+1

2i

2i+1
+ 1

2
1

2i+1

=
2i+1

2i+1 + 1
= 1− 1

2i + 1
.

Thus, if all 100 calls to the matrix identity test return that the
identity is correct, then our confidence in the correctness of this
identity is at least 1− 1

2100+1
.



Min-Cut



Min-Cut Algorithm

Input: An n-node graph G .
Output: A minimal set of edges that disconnects the graph.

1 Repeat n − 2 times:
1 Pick an edge uniformly at random.
2 Contract the two vertices connected by that edge, eliminate all

edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.



Theorem

The algorithm outputs a min-cut set of edges with probability
≥ 2

n(n−1) .

Lemma

Vertex contraction does not reduce the size of the min-cut set.
(Contraction can only increase the size of the min-cut set.)

Proof.

Every cut set in the new graph is a cut set in the original
graph.

Corollary

The algorithm outputs a set that is never smaller than the min-cut
set of the graph.



Analysis of the Algorithm

Assume that the graph has a min-cut set of k edges.
We compute the probability of finding one such set C .

Lemma

If the edge contracted does not belong to C, no other edge
eliminated in that step belongs to C.

Proof.

A contraction eliminates a set of parallel edges (edges connecting
one pair of vertices).
Parallel edges either all belong, or don’t belong to C .



Let Ei = ”the edge contracted in iteration i is not in C .”
Let Fi = ∩ij=1Ej = “no edge of C was contracted in the first i
iterations”.
We need to compute Pr(Fn−2)



Since the minimum cut-set has k edges, all vertices have degree
≥ k, and the graph has ≥ nk/2 edges.
There are at least nk/2 edges in the graph, k edges are in C .
Pr(E1) = Pr(F1) ≥ 1− 2k

nk = 1− 2
n .



Assume that the first contraction did not eliminate an edge of C
(conditioning on the event E1 = F1).
After the first vertex contraction we are left with an n − 1 node
graph, with minimum cut set, and minimum degree ≥ k .
The new graph has at least k(n − 1)/2 edges.
Pr(E2 | F1) ≥ 1− k

k(n−1)/2 ≥ 1− 2
n−1 .

Similarly,
Pr(Ei | Fi−1) ≥ 1− k

k(n−i+1)/2 = 1− 2
n−i+1 .



We need to compute
Pr(Fn−2)

We use
Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(Fn−2) =

Pr(En−2 ∩ Fn−3) = Pr(En−2 | Fn−3)Pr(Fn−3) =

Pr(En−2 | Fn−3)Pr(En−3 | Fn−4)....Pr(E2 | F1)Pr(F1) ≥

≥ Πn−2
i=1

(
1− 2

n − i + 1

)
= Πn−2

i=1

(
n − i − 1

n − i + 1

)
=

(
n − 2

n

)(
n − 3

n − 1

)(
n − 4

n − 2

)
. . .

(
4

6

)(
3

5

)(
2

4

)(
1

3

)
=

2

n(n − 1)
.



Useful identities:

Pr(A | B) =
Pr(A ∩ B)

Pr(B)

Pr(A ∩ B) = Pr(A | B)Pr(B)

Pr(A ∩ B ∩ C ) = Pr(A | B ∩ C )Pr(B ∩ C )

= Pr(A | B ∩ C )Pr(B | C )Pr(C )

Let A1, ....,An be a sequence of events. Let Ei =
⋂i

j=1 Ai

Pr(En) = Pr(An | En−1)Pr(En−1) =

Pr(An | En−1)Pr(An−1 | En−2)....P(A2 | E1)Pr(E1)



Theorem

Assume that we run the randomized min-cut algorithm
n(n − 1) log n times and output the minimum size cut-set found in
all the iterations. The probability that the output is not a min-cut
set is bounded by(

1− 2

n(n − 1)

)n(n−1) log n

≤ e−2 log n =
1

n2
.

Proof.

The algorithm has a one side error: the output is never smaller
than the min-cut value.



The Taylor series expansion of e−x gives

e−x = 1− x +
x2

2!
− ......

Thus, for x < 1,

1− x ≤ e−x .


