Why Probability in Computing?

- Almost any advance computer application today has some randomization/statistical components:
 - Network security
 - Cryptography
 - Web search and Web advertising
 - Spam filtering
 - Recommendation systems Amazon, Netfix,...
 - Machine learning
 - Communication protocols
 - Computational finance
 - System biology
 - DNA sequencing

Probability in Discrete Mathematics

- Random graphs approximate large graphs well
- Existence proofs
- Probabilistic proofs can often be "derandomized", leading to algorithms.
- Randomized rounding of LP solutions often leads to simple approximation algorithms.

Probability and Computing

- Randomized algorithms random steps help!
- Probabilistic analysis of algorithms average case, almost always case, worst case.
- Statistical inference Machine learning, data mining...

Course Outline

- Basic (discrete) probability theory, moments, tail bounds.
- Randomized algorithms, probabilistic analysis, average and almost sure performance.
- Universal Hash functions.
- Random graphs
- The probabilistic method
- Generating random objects (e.g. spanning trees, permutations)
- Use of randomness in communication protocols.
- Exact algorithms based on derandomizing a randomized algorithm.
- Randomized approximation algorithms.
- Random walks Markov chains.
- The Monte-Carlo method.
- Applications: sorting, selection, routing, graph algorithms,...
- Entropy, Randomness, and Information
- Dealing with dependencies: Martingales

Verifying polynomial equivalence

Given polynomials F(x) and G(x) both of degree d, where F(x) is given as $F(x) = \prod_{i=1}^{d} (x - a_i)$ and G(x) is given by its canonical form $G(x) = \sum_{i=0}^{d} c_i x^i$, we want to verify

 $F(x) \equiv G(x)$

Verifying polynomial equivalence

Given polynomials F(x) and G(x) both of degree d, where F(x) is given as $F(x) = \prod_{i=1}^{d} (x - a_i)$ and G(x) is given by its canonical form $G(x) = \sum_{i=0}^{d} c_i x^i$, we want to verify

 $F(x) \equiv G(x)$

standard method: convert F(x) to its cannonical form $F(x) = \sum_{i=0}^{d} b_i x^i$ and check whether $b_i = c_i$ for i = 0, 1, ..., d. Takes $O(d^2)$ operations.

Randomized approach:

- 1 Pick r uniformly at random in $\{1, 2, \ldots, 100d\}$.
- **2** Calculate F(r) and G(r) in O(d) time.
- **3** If $F(r) \neq G(r)$ return 'No'; otherwise return 'Yes'

The probability that the algorithm fails is at most $\frac{d}{100d} = \frac{1}{100}$: F(x) - G(x) is a polynomium of degree at most d and thus, by the fundamental theorem of algebra, it has at most d distinct roots.

- Our algorithm may fail, but only if it (wrongly) returns 'Yes'.
- We can decrease the error probability in two ways:
 - (a) By using a larger interval, say $\{1, 2, ..., 1000d\}$. Now the error probability is at most $\frac{1}{1000}$.
 - (b) By running the algorithm k times (in time O(kd)). Since the out-come in one run is independent of the other runs, the probability that they all answer 'Yes' for an input with $F(x) \not\equiv G(x)$ is at most $\frac{1}{100^k}$.

Method (b) is often preferable as it requires only 5 runs to decrease the error probability to 10^{-10} . We could achieve the same probability by chooing *r* (sampling) from

 $\{1, 2, ..., 1000000000d\}$, but if *d* is large it may be difficult to work with integers from such a big range.

Verifying Matrix Multiplication

Given three $n \times n$ matrices **A**, **B**, and **C** in a Boolean field, we want to verify

AB = C.

Verifying Matrix Multiplication

Given three $n \times n$ matrices **A**, **B**, and **C** in a Boolean field, we want to verify

AB = C.

Standard method: Matrix multiplication - takes $\Theta(n^3)$ ($\Theta(n^{2.37})$) operations.

Randomized algorithm:

- 1 Chooses a random vector $\overline{r} = (r_1, r_2, \dots, r_n) \in \{0, 1\}^n$.
- 2 Compute Br;
- **3** Compute $A(B\bar{r})$;
- 4 Computes Cr;
- **5** If $A(B\bar{r}) \neq C\bar{r}$ return $AB \neq C$, else return AB = C.

The algorithm takes $\Theta(n^2)$ time.

Theorem

If $AB \neq C$, and \overline{r} is chosen uniformly at random from $\{0,1\}^n$, then

$$\Pr(\mathbf{AB}\overline{r} = \mathbf{C}\overline{r}) \leq \frac{1}{2}.$$

Probability Space

Definition

- A probability space has three components:
 - A sample space Ω, which is the set of all possible outcomes of the random process modeled by the probability space;
 - **2** A family of sets \mathcal{F} representing the allowable events, where each set in \mathcal{F} is a subset of the sample space Ω ;
 - **3** A probability function $Pr : \mathcal{F} \to \mathbf{R}$, satisfying the definition below.

An element of Ω is a simple event. In a discrete probability space we use $\mathcal{F} = 2^{\Omega}$.

Probability Function

Definition

A probability function is any function $Pr: \mathcal{F} \to \mathbf{R}$ that satisfies the following conditions:

- 1 For any event E, $0 \leq \Pr(E) \leq 1$;
- **2** $Pr(\Omega) = 1;$
- **3** For any finite or countably infinite sequence of pairwise mutually disjoint events E_1, E_2, E_3, \ldots

$$\Pr\left(\bigcup_{i\geq 1}E_i\right) = \sum_{i\geq 1}\Pr(E_i).$$

The probability of an event is the sum of the probabilities of its simple events.

Independent Events

Definition

Two events E and F are independent if and only if

 $\Pr(E \cap F) = \Pr(E) \cdot \Pr(F).$

More generally, events E_1, E_2, \ldots, E_k are mutually independent if and only if for any subset $I \subseteq [1, k]$,

$$\Pr\left(\bigcap_{i\in I}E_i\right) = \prod_{i\in I}\Pr(E_i).$$

Conditional Probability

We have two coins, coin *A* is a fair coin, coin *B* has probability 2/3 to come up HEAD. We chose a coin at random and got HEAD. What is the probability that we chose coin *A*? E_1 = the event "Chosen coin *A*". E_2 = the event "outcome is HEAD". The conditional probability that we chose coin *A* given that the outcome is HEAD is denoted

 $Pr(E_1 \mid E_2).$

Computing Conditional Probabilities

Definition

The conditional probability that event E_1 occurs given that event E_2 occurs is

$$\Pr(E_1 \mid E_2) = \frac{\Pr(E_1 \cap E_2)}{\Pr(E_2)}.$$

The conditional probability is only well-defined if $Pr(E_2) > 0$.

By conditioning on E_2 we restrict the sample space to the set E_2 . Thus we are interested in $Pr(E_1 \cap E_2)$ "normalized" by $Pr(E_2)$.

Example - a posteriori probability

We are given 2 coins. One is a fair coin A, the other coin, B has probability 2/3 for HEAD. We choose a coin at random, i.e. each coin is chosen with probability 1/2. Given that we got head, what is the probability that we chose the fair coin A??? Define a sample space of ordered pairs (*coin*, *outcome*). The sample space has four points

 $\{(A, h), (A, t), (B, h), (B, t)\}$

Pr((A, h)) = Pr((A, t)) = 1/4

Pr((B, h)) = 1/2 * 2/3 = 1/3

Pr((B, t)) = 1/2 * 1/3 = 1/6

Define two events:

 E_1 = "Chose coin A". E_2 = "Outcome is head".

$$Pr(E_1 | E_2) = \frac{Pr(E_1 \cap E_2)}{Pr(E_2)} = \frac{1/4}{1/4 + 1/3} = 3/7.$$

Verifying Matrix Multiplication

Randomized algorithm:

- 1 Chooses a random vector $\overline{r} = (r_1, r_2, \dots, r_n) \in \{0, 1\}^n$.
- **2** Compute $\mathbf{B}\bar{r}$;
- **3** Compute $A(B\bar{r})$;
- 4 Computes $C\bar{r}$;
- **5** If $A(B\bar{r}) \neq C\bar{r}$ return $AB \neq C$, else return AB = C.

The algorithm takes $\Theta(n^2)$ time.

Theorem

If $AB \neq C$, and \overline{r} is chosen uniformly at random from $\{0,1\}^n$, then

$$\Pr(\mathbf{AB}\overline{r} = \mathbf{C}\overline{r}) \leq \frac{1}{2}.$$

Lemma

Choosing $\overline{r} = (r_1, r_2, ..., r_n) \in \{0, 1\}^n$ uniformly at random is equivalent to choosing each r_i independently and uniformly from $\{0, 1\}$.

Proof.

If each r_i is chosen independently and uniformly at random, each of the 2^n possible vectors \overline{r} is chosen with probability 2^{-n} , giving the lemma.

Proof:

Let $\mathbf{D} = \mathbf{AB} - \mathbf{C} \neq 0$. $\mathbf{AB}\overline{\mathbf{r}} = \mathbf{C}\overline{\mathbf{r}}$ implies that $\mathbf{D}\overline{\mathbf{r}} = 0$. Since $\mathbf{D} \neq 0$ it has some non-zero entry; assume d_{11} . For $\mathbf{D}\overline{\mathbf{r}} = 0$, it must be the case that

$$\sum_{j=1}^n d_{1j}r_j = 0,$$

or equivalently

$$r_1 = -\frac{\sum_{j=2}^n d_{1j}r_j}{d_{11}}.$$
 (1)

Here we use $d_{11} \neq 0$.

Principle of Deferred Decision

Assume that we fixed r_2, \ldots, r_n .

The RHS is already determined, the only variable is r_1 .

$$r_1 = -\frac{\sum_{j=2}^n d_{1j}r_j}{d_{11}}.$$
 (2)

Probability that $r_1 = \text{RHS}$ is no more than 1/2.

More formally, summing over all collections of values $(x_2, x_3, x_4, \dots, x_n) \in \{0, 1\}^{n-1}$, we have $\Pr(\mathbf{AB}\bar{r} = \mathbf{C}\bar{r})$ = \sum $\Pr\left(\mathbf{AB}\overline{r} = \mathbf{C}\overline{r} \mid (r_2, \ldots, r_n) = (x_2, \ldots, x_n)\right)$ $(x_2,\ldots,x_n) \in \{0,1\}^{n-1}$ $\cdot \Pr\left((r_2,\ldots,r_n)=(x_2,\ldots,x_n)\right)$ $= \sum \operatorname{Pr}\left(\left(\mathbf{AB}\overline{r} = \mathbf{C}\overline{r}\right) \cap \left(\left(r_2, \ldots, r_n\right) = \left(x_2, \ldots, x_n\right)\right)\right)$ $(x_2,\ldots,x_n) \in \{0,1\}^{n-1}$ $\leq \sum_{(x_2,...,x_n)\in\{0,1\}^{n-1}} \Pr\left(\left(r_1 = -\frac{\sum_{j=2}^n d_{1j}r_j}{d_{11}}\right) \cap \left((r_2,\ldots,r_n) = (x_2,\ldots,x_n)\right)\right)$ $= \sum_{(x_2,...,x_n) \in \{0,1\}^{n-1}} \Pr\left(r_1 = -\frac{\sum_{j=2}^n d_{1j}r_j}{d_{11}}\right) \cdot \Pr\left((r_2,...,r_n) = (x_2,...,x_n)\right)$ $\leq \sum_{(x_2,...,x_n)\in\{0,1\}^{n-1}}\frac{1}{2}\Pr((r_2,...,r_n)=(x_2,...,x_n))$ $= \frac{1}{2}$.

Theorem (Law of Total Probability)

Let $E_1, E_2, ..., E_n$ be mutually disjoint events in the sample space Ω , and $\bigcup_{i=1}^{n} E_i = \Omega$, then

$$\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap E_i) = \sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i).$$

Proof.

Since the events E_i , i = 1, ..., n are disjoint and cover the entire sample space Ω ,

$$\Pr(B) = \sum_{i=1}^{n} \Pr(B \cap E_i) = \sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i).$$

Smaller Error Probability

The test has a one side error, repeated tests are independent.

- Run the test *k* times.
- Accept AB = C if it passed all k tests.

Theorem

The probability of making a mistake is $\leq (1/2)^k$.

Bayes' Law

Theorem (Bayes' Law)

Assume that E_1, E_2, \ldots, E_n are mutually disjoint sets such that $\bigcup_{i=1}^{n} E_i = \Omega$, then

$$\Pr(E_j \mid B) = \frac{\Pr(E_j \cap B)}{\Pr(B)} = \frac{\Pr(B \mid E_j) \Pr(E_j)}{\sum_{i=1}^{n} \Pr(B \mid E_i) \Pr(E_i)}$$

Application: Finding a Biased Coin

- We are given three coins, two of the coins are fair and the third coin is biased, landing heads with probability 2/3. We need to identify the biased coin.
- We flip each of the coins. The first and second coins come up heads, and the third comes up tails.
- What is the probability that the first coin is the biased one?

Let E_i be the event that the *i*-th coin flipped is the biased one, and let *B* be the event that the three coin flips came up heads, heads, and tails.

Before we flip the coins we have $Pr(E_i) = 1/3$ for i = 1, ..., 3, thus

$$\Pr(B \mid E_1) = \Pr(B \mid E_2) = \frac{2}{3} \cdot \frac{1}{2} \cdot \frac{1}{2} = \frac{1}{6},$$

and

$$\Pr(B \mid E_3) = \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{3} = \frac{1}{12}.$$

Applying Bayes' law we have

$$\Pr(E'_1 \mid B) = \frac{\Pr(B \mid E_1) \Pr(E_1)}{\sum_{i=1}^{3} \Pr(B \mid E_i) \Pr(E_i)} = \frac{2}{5}.$$

The outcome of the three coin flips increases the probability that the first coin is the biased one from 1/3 to 2/5.

Bayesian approach

- Start with an *prior* model, giving some initial value to the model parameters.
- This model is then modified, by incorporating new observations, to obtain a *posterior* model that captures the new information.

Example: randomized matrix multiplication test

- We want to evaluate the increase in confidence through repeated tests.
- If we have no information about the process that generated the identity, a reasonable prior assumption is that the identity is correct with probability 1/2.
- If we run the randomized test once and it returns that the matrix identity is correct, how does it change our confidence in the identity?

Let E be the event that the identity is correct, and let B be the event that the test returns that the identity is correct. We start with $Pr(E) = Pr(\overline{E}) = 1/2$, and since the test has a one side error bounded by 1/2, we have $Pr(B \mid E) = 1$, and $Pr(B \mid \overline{E}) \le 1/2$. Applying Bayes' law we have

$$\Pr(E' \mid B) = \frac{\Pr(B \mid E) \Pr(E)}{\Pr(B \mid E) \Pr(E) + \Pr(B \mid \overline{E}) \Pr(\overline{E})}$$

$$\geq \frac{1/2}{1/2 + 1/2 \cdot 1/2} = 2/3.$$

- Assume now that we run the randomized test again and it again returns that the identity is correct.
- After the first test, the prior model was revised, so $\Pr(E) \ge 2/3$, and $\Pr(\overline{E}) \le 1/3$.
- $\Pr(B \mid E) = 1$ and $\Pr(B \mid \overline{E}) \le 1/2$.

Applying Bayes' law we have

$$\Pr(E' \mid B) \ge \frac{2/3}{2/3 + 1/3 \cdot 1/2} = 4/5.$$

In general, if before running the test our prior model is that $Pr(E) \ge 2^i/(2^i + 1)$, and the test returns that the identity is correct (event *B*), then

$$\Pr(E' \mid B) \geq \frac{\frac{2^{i}}{2^{i}+1}}{\frac{2^{i}}{2^{i}+1} + \frac{1}{2}\frac{1}{2^{i}+1}} = \frac{2^{i+1}}{2^{i+1}+1} = 1 - \frac{1}{2^{i}+1}.$$

Thus, if all 100 calls to the matrix identity test return that the identity is correct, then our confidence in the correctness of this identity is at least $1 - \frac{1}{2^{100}+1}$.

Min-Cut

Source: On the history of the transportation and maximum flow problems. Alexander Schrijver in Math Programming, 91: 3, 2002.

Min-Cut Algorithm

Input: An *n*-node graph *G*.

Output: A minimal set of edges that disconnects the graph.

1 Repeat n-2 times:

- 1 Pick an edge uniformly at random.
- 2 Contract the two vertices connected by that edge, eliminate all edges connecting the two vertices.

2 Output the set of edges connecting the two remaining vertices.

Theorem

The algorithm outputs a min-cut set of edges with probability $\geq \frac{2}{n(n-1)}$.

Lemma

Vertex contraction does not reduce the size of the min-cut set. (Contraction can only increase the size of the min-cut set.)

Proof.

Every cut set in the new graph is a cut set in the original graph.

Analysis of the Algorithm

Assume that the graph has a min-cut set of k edges. We compute the probability of finding one such set C.

Lemma

If the edge contracted does not belong to C, no other edge eliminated in that step belongs to C.

Proof.

A contraction eliminates a set of parallel edges (edges connecting one pair of vertices). Parallel edges either all belong, or don't belong to C.

Let $E_i =$ "the edge contracted in iteration *i* is not in *C*." Let $F_i = \bigcap_{j=1}^{i} E_j =$ "no edge of *C* was contracted in the first *i* iterations".

We need to compute $Pr(F_{n-2})$

Since the minimum cut-set has k edges, all vertices have degree $\geq k$, and the graph has $\geq nk/2$ edges. There are at least nk/2 edges in the graph, k edges are in C. $Pr(E_1) = Pr(F_1) \geq 1 - \frac{2k}{nk} = 1 - \frac{2}{n}$. Assume that the first contraction did not eliminate an edge of C (conditioning on the event $E_1 = F_1$).

After the first vertex contraction we are left with an n-1 node graph, with minimum cut set, and minimum degree $\geq k$. The new graph has at least k(n-1)/2 edges.

 $Pr(E_2 | F_1) \ge 1 - \frac{k}{k(n-1)/2} \ge 1 - \frac{2}{n-1}$. Similarly,

 $Pr(E_i | F_{i-1}) \geq 1 - \frac{k}{k(n-i+1)/2} = 1 - \frac{2}{n-i+1}.$

We need to compute

 $Pr(F_{n-2})$

We use

 $Pr(A \cap B) = Pr(A \mid B)Pr(B)$

 $Pr(F_{n-2}) =$

 $Pr(E_{n-2} \cap F_{n-3}) = Pr(E_{n-2} | F_{n-3})Pr(F_{n-3}) =$

 $Pr(E_{n-2} | F_{n-3})Pr(E_{n-3} | F_{n-4})....Pr(E_2 | F_1)Pr(F_1) \ge$

$$\geq \prod_{i=1}^{n-2} \left(1 - \frac{2}{n-i+1} \right) = \prod_{i=1}^{n-2} \left(\frac{n-i-1}{n-i+1} \right)$$
$$= \left(\frac{n-2}{n} \right) \left(\frac{n-3}{n-1} \right) \left(\frac{n-4}{n-2} \right) \dots \left(\frac{4}{6} \right) \left(\frac{3}{5} \right) \left(\frac{2}{4} \right) \left(\frac{1}{3} \right) = \frac{2}{n(n-1)}.$$

Useful identities:

$$Pr(A \mid B) = \frac{Pr(A \cap B)}{Pr(B)}$$

 $Pr(A \cap B) = Pr(A \mid B)Pr(B)$

 $Pr(A \cap B \cap C) = Pr(A \mid B \cap C)Pr(B \cap C)$

 $= Pr(A \mid B \cap C)Pr(B \mid C)Pr(C)$

Let $A_1, ..., A_n$ be a sequence of events. Let $E_i = \bigcap_{i=1}^i A_i$

 $Pr(E_n) = Pr(A_n \mid E_{n-1})Pr(E_{n-1}) =$

 $Pr(A_n | E_{n-1})Pr(A_{n-1} | E_{n-2})....P(A_2 | E_1)Pr(E_1)$

Theorem

Assume that we run the randomized min-cut algorithm $n(n-1)\log n$ times and output the minimum size cut-set found in all the iterations. The probability that the output is not a min-cut set is bounded by

$$\left(1-\frac{2}{n(n-1)}\right)^{n(n-1)\log n} \le e^{-2\log n} = \frac{1}{n^2}.$$

Proof.

The algorithm has a one side error: the output is never smaller than the min-cut value.

The Taylor series expansion of e^{-x} gives

$$e^{-x} = 1 - x + \frac{x^2}{2!} - \dots$$

Thus, for x < 1,

 $1-x \le e^{-x}.$