The Monte Carlo Method

Example: estimate the value of 7.

gh
N/

Choose X and Y independently and uniformly at random in

[0, 1].
o Let
S 1 iFVXTEYI<,
| 0 otherwise,
e Pr(Zz=1)=7.

4E[Z] = 7.

Let Z1,...,Z,, be the values of m independent experiments.
w=>",2.

m

>2

i=1

E[W] =E

mm
w' = %W is a natural estimate for 7.

Pr((W — 7| > er) = Pr (|W——]_”Z7T)

= Pr(W — E[W]| = cE[W])
< 2o M .(Chernoff bound, Cor. 4.6)

(e, 0)-Approximation

Definition
A randomized algorithm gives an (¢, d)-approximation for the value
V' if the output X of the algorithm satisfies

Pr(X — V| < eV)>1—6.

The method for approximating 7 gives an (e, §)-approximation as
long as € < 1 and m is large enough to make

2efm7re2/12 <6

so we need 121n(2/5
. 12In(2/9)

- Te2

Theorem

Let X1,..., X, be independent and identically distributed indicator
random variables, with ;1 = E[X;]. If m > ilgu

1
P = Xi — > < 4.

That is, m samples provide an (e, §)-approximation for .

N2
o then

Approximate Counting

Example counting problems:
@ How many spanning trees in a graph?

® How many perfect matchings in a graph?

DNF Counting

DNF = Disjunctive Normal Form.

Problem: How many satisfying assignments to a DNF formula?
A DNF formula is a disjunction of clauses.

Each clause is a conjunction of literals.

AAX)V (e Ax3)V(xi Axa AX3 A xa)V (x3AXg)

Compare to CNF.

(X1VX2)A(X1V73)/\"'

m clauses, n variables
Let's first convince ourselves that obvious approaches don't work!

DNF counting is hard

Question: Why?
We can reduce CNF satisfiability to DNF counting.
The negation of a CNF formula is in DNF.

® CNF formula

@ get the DNF formula (f)

@© count satisfying assignments to f

® This number is 27 if and only if f is unsatisfiable.

DNF counting is #P complete

#P is the counting analog of NP.

Any problem in #P can be reduced (in polynomial time) to the
DNF counting problem.

Example #P complete problems:

@® How many Hamilton circuits does a graph have?
® How many satisfying assignments does a CNF formula have?
© How many perfect matchings in a graph?

What can we do about a hard problem?

(e,0) FPRAS for DNF counting

FPRAS = "Fully Polynomial Randomized Approximation Scheme”
Notation:

U: set of all possible assignments to variables

|U| = 2".

H C U: set of satisfying assignments

Want to estimate Y = |H|

Give € > 0,0 > 0, find estimate X such that

@ Pr[[X—-Y|>eY] <6
@® Algorithm should be polynomial in 1/¢, 1/6, n and m.

Monte Carlo method

Here's the obvious scheme (Algorithm 1, page 256 in book).
1. Repeat N times:
1.1. Sample x randomly from U, that is, generate one of the
2" possible assignments uniformly at random.
1.2. Count a success if x € H (formula satisfied by x)
2. Return “fraction of successes” x |U].
Question: How large should NV be?
We have to evaluate the probability of our estimate being good.

H
Let p = |U|

Let the indicator random variable Z; = 1 if i-th trial was
successful. Then

7 1 with probability p
" 10 with probability 1—p

N
Z = g Z; is a binomial random variable whose expected value is

i=1
E[Z] = Np

Z
X = N|U| is our estimate of |H]|

Probability that our algorithm succeeds

Recall: X denotes our estimate of |H|.

Pri(1— €)|H| < X < (14 €)|H]|]
= Pr[(1-e)|H| < Z|U|/N < (1 +€)|H]]
= Pr[(1—e)Np< Z < (1+€)Np]
1— e—N/)52/3 _ e—NP€2/2

1 — 2e Nroe?/3

ARV

where we have used Chernoff bounds.
For an (e,) approximation, this has to be greater than 1 — ¢,

2e Nr*/3 - 5

3 2
N > — log —
>p62 og

Theorem

Let p = |H|/|U|. Then the Monte Carlo method is an (¢, 0)
approximation scheme for estimating |H| provided that

3 2
N>P|og5.

What's wrong?

1
How large could — be?
p is the fraction of satisfying assignments.

@ The number of possible assignments is 2.

@® Maybe there are only a polynomial (in n) number of satisfying
assignments.

1
® So, — could be exponential in n.

Question: An example where formula has only a few assignments?

The trick: Skewed sampling

Increase the hit rate (p)!
Sample from a different universe, p is higher, and all elements of H
still represented.

What's the new universe?
Notation: H; set of assignments that satisfy clause /.
H=HiUHU...Hy
Define a new universe

U:HlLﬂHzL-lj...H-JHm

|+ means multiset union.

Example - Partition by clauses

(71/\X2)\/(X2/\X3)\/(XlAX2A73AX4)V(X3A74)

Clause

X2 X3 X4

X1

More about the universe U

@ U contains only the satisfying assignments.
® U is a multiset (contains the same element many times).

© Element of U is (v, i) where v is an assignment, / is the
satisfied clause.
U={(v,i)|v eH}

@ Each satisfying assignment v appears in as many clauses as it
satisfies.

One way of looking at U

Partition by clauses.
m partitions, partition / contains H;.

Another way of looking at U

Partition by assignments (one region for each assignment v).
Each partition corresponds to an assignment.
Can we count the different (distinct) assignments?

Example - Partition by assignments

GaAAx)V(eAX3) V(1 Ax2x AX3A X))V (x3A\Xg)

Clause

X2 X3 X4

X1

Canonical element

Crucial idea: For each assignment group, find a canonical element
in U.
An element (v, i) is canonical if f((v,i)) =1

F(v.) = {1 fi=min{j: v H)

0 otherwise

For every assignment group, exactly one canonical element.
So, count the number of canonical elements!

Note: could use any other definition as long as exactly one
canonical element per assignment

Count canonical elements

Reiterating:
@ Number of satisfying assignments =
Number of canonical elements.
® Count number of canonical elements.

© Back to old random sampling method for counting!

What is p?

Lemma

1
p > —, (pretty large).
m

|H| = | U™, H;|, since H is a normal union.
So |H;| < |H|

Recall U=Hi{Ho 1Y) ... 1 Hn
\U| = > |Hi|, since U is a multiset union.

How to generate a random element in U?

Look at the partition of U by clauses.
Algorithm Select:

@ Pick a random clause weighted according to the area it
occupies.

Hl_ A
U~ ST H

|Hi| = 2(n=k) where k; is the number of literals in clause /.

Pr[i] =

® Choose a random satisfying assignment in H;.

e Fix the variables required by clause /.
e Assign random values to the rest to get v

(v, i) is the random element.

Running time: O(n).

How to test if canonical assignment?

Or how to evaluate 7((v,1))?
Algorithm Test:

@ Test every clause to see if v satisfies it.
cou(v) = {(v. v € H;}
@® If (v, i) the smallest in cov(v), then f(v,i) =1, else 0.
Running time: O(nm).

Back to random sampling
Algorithm Coverage:

® s < 0 (number of successes)
® Repeat N times:

e Select (v, /) using Select.
o if f(v,i) =1 (check using Test) then success, increment s.

© Return s|U|/N.

Number of samples needed is (from Theorem 3):

32
N=—InZ
s

3m 2
5 < —In-=
€p

)

Sampling, testing: polynomial in n and m
We have an FPRAS

Theorem

The Coverage algorithm yields an (e, 0) approximation to |H|
provided that the number of samples N > 3’6—’2” log %.

Counting Independent Sets

Input: a graph G = (V,E). |V|=n, |E| = m.
Let e1,...,em be an arbitrary ordering of the edges.

G = (V,E;), where E;={e,..., €}

G =G, Go=(V,0) and G;_; is obtained from G; be removing a
single edge.
Q(Gj) = the set of independent sets in G;.

G| AGn)| 1G] 9AG)]
U = 1) [UCor2)] [Gor)] < (G <)
= 7’9(@)‘ i=1 m.

L QG))

Algorithm

Estimating r;
Input: Graphs G,'_l = (V E,'_l) and G,' = (V E,)
Output: 7 = an approximation of r;.

o X 0.

® Repeat for M = [1296m?¢ 2 In 2] independent trials:

@ Generate an uniform sample from Q(G;_1);
@ If the sample is an independent set in G;, let X «+ X + 1.

© Return 7 « .

Lemma
ri 2 1/2

Proof.

Q(G;) € QGi_1).

Suppose that G,_; and G; differ in the edge {u, v}.

An independent set in Q(G;_1) \ Q(G;) contains both v and v. To
bound the size of the set Q(G;_1) \ Q(G;), we associate each

I € Q(Gj—1) \ Q(G;) with an independent set / \ {v} € Q(G;). An
independent set /" € Q(G;) is associated with no more than one
independent set I’ U {v} € Q(G;_1) \ Q(G;), and thus

12(Gi—1) \ Q(G))| < |Q2(G;j)]. It follows that

P QG) _ 1Q(G))|
OGS 1QAGH)] + 12Gi—1) \ Q(G)]

>1/2.

Lemma

When m > 1 and 0 < € < 1, the procedure for estimating r; yields
an estimate f; that is (¢/2m,d/m)-approximation for r;.

o Our estimate is 2" [[, 7
o The true number is |Q(G)| = 2"[" r.
e To evaluate the error in our estimate we need to bound the
ratio
m
R= —.
i=1

Lemma

Suppose that for all i, 1 < i < m, F; is an
(¢/2m, §/m)-approximation for r;. Then

Pr(R—1/<e)>1-04.

Proof: For each 1 </ < m, we have

Equivalently,

By the union bound the probability that |F; — r;| > 5~ r; for any i is
at most 0, and hence |F; — r;| < 5-r; for all / with probability at

least 1 — 9. Equivalently,
€ €
1—- — <2< 14+ —
2m ~ o + 2m
holds for all / with probability at least 1 — §. When these bounds
hold for all /, we can combine them to obtain

m

€ \m r; € \m
1—,<(1——> < i<<1 —) < (1 ,
€= 2m _l_Ilr,-_ +2m _(+6)/
1=

Estimating r;
Input: Graphs G;_; = (V,E;_1) and G; = (V, E;).
Output: 7 = an approximation of r;.

® X 0.

@® Repeat for M = [1296m?e 2 In 27”7} independent trials:

@ Generate an uniform sample from Q(G;_1);
@® If the sample is an independent set in G;, let X «+ X + 1.

©® Return 7 < %

Definition

Let w be the (random) output of a sampling algorithm for a finite
sample space €). The sampling algorithm generates an e-uniform
sample of Q) if, for any subset S of Q,

5]

Priwe S)— | <e

€|
A sampling algorithm is a fully polynomial almost uniform sampler
(FPAUS) for a problem if, given an input x and a parameter ¢ > 0,
it generates an e-uniform sample of Q(x), and it runs in time
polynomial in Ine~! and the size of the input x.

Estimating r;
Input: Graphs G;_1 = (V E,'_l) and G; = (V E,)
Output: 7 = an approximation of r;.

o X 0.
® Repeat for M = [1296m?c~2In 2] independent trials:

€

@ Generate an ¢--uniform sample from Q(G;_1);
@® |If the sample is an independent set in G;, let X «+ X + 1.

© Return 7 « .

Lemma

When m > 1 and 0 < € < 1, the procedure for estimating r; yields
an (e/2m, d/m)-approximation for r;

€

How do we ' i
Generate an ;- -uniform sample from Q(G; 1)?

From Approximate Sampling to Approximate
Counting

Theorem

Given a fully polynomial almost uniform sampler (FPAUS) for
independent sets in any graph, we can construct a fully polynomial
randomized approximation scheme (FPRAS) for the number of
independent sets in a graph G with maximum degree at most A.

The Markov Chain Monte Carlo Method

Idea: define an ergodic Markov chain whose stationary distribution
is the desired probability distribution.

Let Xy, X1, X5, ..., X, be the run of the chain.

The Markov chain converges to its stationary distribution from any
starting state Xp so after some sufficiently large number r of steps,
the distribution at of the state X, will be close to the stationary
distribution 7 of the Markov chain.

Now, repeating with X, as the starting point we can use X5, as a
sample etc.

So X,, Xo,, X3y, ... can be used as almost independent samples
from 7.

N(x)— set of neighbors of x. Let M > max,cq |N(x)|.

Lemma

Consider a Markov chain where for all x and y with y # x,
P = % if y € N(x), and P, , = 0 otherwise. Also,
Pex=1- w If this chain is irreducible and aperiodic, then

the stationary distribution is the uniform distribution.

Proof.

We show that the chain is time-reversible, and apply Theorem
7.10. For any x # y, if m, = 7, then

TxPxy = Ty Py x,

since P, , = P, = 1/M. It follows that the uniform distribution
7 = 1/|Q| is the stationary distribution. O

Sampling a uniform distribution on the independent
sets

Consider a Markov chain whose states are independent sets in a
graph G = (V,E):
@ Xp is an arbitrary independent set in G.
® To compute X 1:
@ Choose a vertex v uniformly at random from V.
@ If v € X then X;+1 = X; \ {V};
©® if v ¢ X;, and adding v to X; still gives an independent set,
then Xy = Xi U {v};
@ otherwise, Xi 1 = X;.

e The chain is irreducible
e The chain is aperiodic (as G has at least one edge)
e Fory #x, P, =1/|V|or0.

The lemma implies that the stationary distribution is the uniform
distribution.

The Metropolis Algorithm

Assuming that we want to sample with non-uniform distribution.
For example, we want the probability of an independent set of size
i to be proportional to \'.

Consider a Markov chain on independent sets in G = (V| E):

@ Xp is an arbitrary independent set in G.
® To compute X 1:
@ Choose a vertex v uniformly at random from V.
@ If v € X; then set X; 1 = X;\ {v} with probability min(1,1/\);
® if v ¢ X;, and adding v to X; still gives an independent set,
then set X1 = X; U {v} with probability min(1, \);
@ otherwise, set Xi, 1 = X;.

For a finite state space Q, let M > max,cq |N(x)|. For all x € Q,
let m, > 0 be the desired probability of state x in the stationary
distribution. Consider a Markov chain where for all x and y with

Y # X, :
. T
Py = g min <1’ wi)

if y € N(x), and Py, = 0 otherwise. Further,

Pux =1=3_,,, Pxy. Then if this chain is irreducible and
aperiodic, the stationary distribution is given by the probabilities
Tx.

We show the chain is time-reversible. For any x # y, if 7, <,
then P, =1 and P, , = m,/m,. It follows that 7 Py, = 7, P, .
Similarly, if 7 > 7, then Py, =7, /7 and P, =1, and it

follows that 7Py, = 7, P, «. O

Note that the Metropolis Algorithm only needs the ratios 7, /7, 's.
In our construction, the probability of an independent set of size i
is \'/BforB=>" Asz¢(%) although we may not know B.

