# Lagrangean Duality

#### Jesper Larsen

Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby – Denmark Email: jla@imm.dtu.dk



#### Relaxation



- A problem (RP)  $z^R = \max\{f(x) : x \in T \subseteq R^n\}$  is a relaxation of (IP)  $z = \max\{c(x) : x \in X \subseteq R^n\}$  if:
  - $\diamond$  (i)  $X \subseteq T$
  - $\diamond$  (ii) for all  $x \in X$ :  $c(x) \leq f(x)$

#### Introduction



Lagrangean relaxation is a technique which has been known for many years.

- The technique has been very useful in conjuction with Branch and Bound
- Since the early 70's it has emerged as **the** bounding technique
- Has also served as the basis for the development of heuristics (dual ascent) and variable fixing.

### Lagrangian Relaxation



Consider an integer programming problem:

$$\max cx$$

$$Dx \leq d$$

$$x \in X$$

where  $x \in X$  equals  $x \in \{x : Ax \le b, x \text{ integer}\}$  for our regular integer programming problem. Now assume that if we dropped  $Dx \le d$  the problem

$$\max cx$$

$$x \in X$$

DTU

Now go one step further and add a penalty term (to the objective function) that is "active" when  $Dx \leq d$  is violated, that is,

$$\max cx + u(d - Dx)$$
$$x \in X$$

where  $u \geq 0$ .

 $z(u) = \max\{cx + u(d - Dx) : x \in X\}$  is called the Lagrangian relaxation of  $z = \max\{cx : Dx \le d, x \in X\}$ .

#### **Notation**



The lagrangian relaxation is often denoted IP(u) which is

$$z(u) = \max_{x \in X} \{cx + u(d - Dx)\}$$

**Proposition:** For  $u \ge 0$  IP(u) is a relaxation of IP (the original integer programming problem).

*Proof:* (i) Feasible region enlarged, and (ii) objective function pointwise larger on all feasible x.

Hence for  $u \ge 0$  IP(u) provides a dual (upper) bound.



Next logical step. As IP(u) provides a dual (upper) bound for  $u \ge 0$  let us look for the best one:

$$w_{\text{LD}} = \min_{u \ge 0} \{z(u)\}$$
  
=  $\min_{u \ge 0} \{\max_{x \in X} \{cx + u(d - Dx)\}\}$ 

**Central question:** Best u? When does LD solve the original?



#### **Proposition:** If $u \ge 0$ and

- 1. x(u) is an optimal solution of IP(u)
- 2.  $Dx \leq d$
- 3.  $Dx(u)_i = d_i$  whenever  $u_i > 0$

then x(u) is optimal in IP.

#### **Issues**



There are two issues that needs to be discussed when using Lagrangean relaxation:

- Which constraints to relax?
- How to find Lagrangean multipliers?



- Ideally the optimal value of the Lagrangean dual program is equal to the optimal value of the original integer program.
- If the two programs do not have optimal values which are equal then a duality gap is said to exist, the size of which is measured by the relative difference between the two optimal values.
- Eg. in the case of weak duality there might be a gap between the two solutions.



- The size of the gap is a good indicator of the difficulty of a problem.
- As a rule of thumb problems with a gap of more than 5-10% are too difficult to solve in practice.
- Note that in most cases we only have an estimate of the gap as we do not know the exact value of the optimal solution.

### Lagrangean decomposition



Consider the following problem:

$$\begin{array}{rcl}
\min & cx \\
Ax & \leq & b \\
Dx & \leq & d \\
x & \in & B
\end{array}$$

Now we introduce a set of variables y and set them equal to x. We can now use them in our second set of constraints and get.



$$\begin{array}{rcl}
\min & cx \\
x & = & y \\
Ax & \leq & b \\
Dy & \leq & d \\
x & \in & B \\
y & \in & B
\end{array}$$

The original problem and the transformed problem are equivalent. NOW let us relax the constraints linking x and y together by introducing a Lagrangean multiplier vector  $\lambda$ . We then get



$$\min \quad cx + \lambda(x - y)$$

$$Ax \le b$$

$$Dy \le d$$

$$x \in B$$

$$y \in B$$

and now our problem is separable into the sum of the two programs:



$$\begin{array}{llll} \min & (c+\lambda)x & \quad \text{and} \quad \min & -\lambda y \\ & Ax \leq b & \quad Dy \leq d \\ & x \in B & \quad y \in B \end{array}$$

The sum of the solutions to these two programs provides a lower bound on the optimal solution to the original problem.





For simplicity assume that the set X contains a very large but finite number of points  $\{x^1, x^2, \dots, x^T\}$ .

$$\begin{split} w_{LD} &= \min_{u \leq 0} z(u) \\ &= \min_{u \leq 0} \{ \max_{x \in X} [cx + u(d - Dx)] \} \\ &= \min_{u \leq 0} \{ \max_{t = 1, 2, \dots, T} [cx^t + u(d - Dx^t)] \} \\ &= \min \eta \\ &\qquad \eta \geq cx^t + u(d - Dx^t) \text{ for all } t \\ &\qquad u \in R_+^m, \eta \in R^1 \end{split}$$



The latter problem is a linear programming problem. Taking its dual gives:

$$w_{LD} = \max \sum_{t=1}^{T} \mu_t(cx^t)$$

$$\sum_{t=1}^{T} \mu_t(Dx^t - d) \le 0$$

$$\sum_{t=1}^{T} \mu_t = 1$$

$$\mu \in R_+^T$$

Now if we set  $x = \sum_{t=1}^{T} \mu_t x^t$  we get:



$$w_{LD} = \max cx$$
 
$$Dx \le d$$
 
$$x \in \text{conv}(X)$$

This result can also be shown in the more general case where X is the feasibe region of any integer program.

Theorem:  $w_{LD} = \max\{cx : Dx \leq d, x \in \text{conv}(X).$ 

#### Structure of LD



- Minimize piecewise linear convex function non-differential
- Subgradient of convex function:  $f: \mathbb{R}^m \to \mathbb{R}$ 
  - $\diamond$  subgradient at u:

$$\gamma(u) \in R^m 
f(v) \ge f(u) + \gamma(u)^T (v - u)$$

♦ Note: if f is differentiable, then only one subgradient exists: the gradient.

# Subgradient Algorithm



- 1. Choose initial Lagrange multiplies  $u^0$ , set t=0
- 2. Solve the Lagrangean subproblem  $IP(u^t)$
- 3. Calculate the current violation of the complicated constraints  $s=d-Dx(u^t)$
- 4.  $u^{t+1} = u^t + \mu^t \frac{s}{\|s\|}$ ,  $\mu^t$  is the step size
- 5. t := t + 1

The algorithm is guaranteed to converge to the optimal solution as long as  $\{\mu^t\}_{t=0}^{\infty} \to 0$  and  $\sum_{t=0}^{\infty} \mu^t \to \infty$ .

## Subgradient Algorithm - specialization



- 1. Choose initial Lagrange multiplies  $u^0$ , set t=0
- 2. Define  $0 < \pi \le 2$
- 3. Solve the Lagrangean subproblem  $IP(u^t)$
- 4. Calculate the current violation of the complicated constraints  $s = d Dx(u^t)$
- 5. Calculate  $T = \frac{\pi(z_{UB} z(u))}{\sum s_i^2}$
- 6.  $u_i^{t+1} = max\{0, u_i^t + Ts_i\}$
- 7. t := t + 1

### Subgradient applied to Setcover



Let us take our set covering example from earlier.

- Set  $\pi = 2$ , u = (4, 4, 3, 3).
- Solve IP(u):  $x_1 = x_2 = 1, x_3 = x_4 = x_5 = x_6 = 0$  and z(u) = 12
- Compute s:  $s_1=1-x_1-x_3-x_6=0$ ,  $s_2=1-x_2-x_4-x_5=0, \ s_3=1-x_1-x_2-x_3=-1, \\ s_4=1-x_3-x_5=1$
- $T = \frac{2(z_{UB} z_{LB})}{\sum s_i} = \frac{2(22 12)}{2} = 10$



• Update the 
$$u$$
's:  $u_1 = max\{0, 4 + 10 \cdot 0\} = 4$ ,  $u_2 = max\{0, 4 + 10 \cdot 0\} = 4$ ,  $u_3 = max\{0, 3 + 10 \cdot (-1)\} = 0$ ,  $u_1 = max\{0, 3 + 10 \cdot 1\} = 13$ ,

If we recompute z(u) now with the updated u's we see that we get 6, which is a worse lower bound. The subgradient does namely not promise improvement in **every** step.