# Optimality and relaxation

#### Jesper Larsen Jens Clausen

Informatics and Mathematical Modelling Technical University of Denmark 2800 Kgs. Lyngby – Denmark Email: jla@imm.dtu.dk



## Optimality and Relaxation



Basic solution approach to any IP or COP:

$$z = \max\{c(x) : x \in X \subseteq Z^n\}$$

- ♦ Find lower bound (LB)  $\underline{z}$  s.t.  $\underline{z} \leq z$
- $\diamond$  Find upper bound (UB)  $\bar{z}$  s.t.  $\bar{z} \geq z$

Now clearly  $\bar{z} \geq \underline{z}$ . Furthermore we have  $\bar{z} = \underline{z} = z$  and we are done.

#### General approach



$$\underline{z}_1 < \underline{z}_2 < \underline{z}_3 < \ldots \leq z \leq \ldots \bar{z}_3 < \bar{z}_2 < \bar{z}_1$$

If  $\bar{z}_t - \underline{z}_s < \epsilon$  then we may stop (and if  $\bar{z}_t - \underline{z}_s = 0$  we have found an optimum.

#### **Bounds**



How do we actually find (upper and lower) bounds?

- **Primal bounds**: (lower bound for a max problem). Every feasible solution  $x^* \in X$  is a lower bound.
- ◆ Dual bounds: (upper bound for a max problem). Most important approach is by "relaxation", that is, replace the original problem by an simpler optimization problem whose value is at least as large as z.

#### Relaxation



- A problem (RP)  $z^R = \max\{f(x) : x \in T \subseteq R^n\}$  is a relaxation of (IP)  $z = \max\{c(x) : x \in X \subseteq R^n\}$  if:
  - $\diamond$  (i)  $X \subseteq T$
  - $\diamond$  (ii) for all  $x \in X$ :  $c(x) \leq f(x)$

#### Relaxation

DTU

- 1. Linear Programming relaxation
- 2. Combinatorial relaxation
- 3. Lagrangian relaxation

# Linear Programming relaxation



- For the integer program  $\max\{cx:x\in P\cap Z^n\}$  with the formulation  $P=\{x\in R^n_+:Ax\leq b\}$  the linear programming relaxation is  $\max\{cx:x\in P\}$ .
- Proporsition 2.3:
  - (i) If a relaxation RP is infeasible, the original problem is infeasible.
  - (ii) Let  $x^*$  be an optimal solution to RP. If  $x^* \in X$  and  $f(x^*) = c(x^*)$  then  $x^*$  is an optimal solution to IP.

#### Combinatorial Relaxations



Whenever the relaxed problem is a combinatorial optimization problem we speak of a **combinatorial optimization**.

### Lagrangian Relaxation



Consider an integer programming problem:

$$Ax \leq b$$

$$x \in X$$

Now assume that if we dropped  $Ax \leq b$  the problem

$$\max cx$$

$$x \in X$$

would be "easy".

DTU

Now go one step further and add a penalty term (to the objective function) that is "active" when  $Ax \leq b$  is violated, that is,

$$\max cx + u(b - Ax)$$

$$x \in X$$

$$z(u) = \max\{cx + u(b - Ax) : x \in X\}$$
 is called the Lagrangian relaxation of  $z = \max\{cx : Ax \le b, x \in X\}$ .

### Aside: How to spell Lagrangian

DTU

- Some spell it "Lagrangean".
- Some spell it "Lagrangian".
- Letting the one and only Google decide we get 467000 hits for Lagrangian and 12500 hits for Lagrangean. (12 Feb. 2004)
- So Lagrangian wins!!

## **Duality**



- ♦ The two problems  $z = \max\{c(x) : x \in X\}$  and  $w = \min\{w(u) : u \in U\}$  form a **(weak-)dual pair** if  $c(x) \le w(u)$  for all  $x \in X, u \in U$ .
- If z=w, that is, there exists  $x^* \in X$  and  $u^* \in U$  s.t.  $c(x^*)=w(u^*)$  they form a **(strong-)dual pair**.



Linear programming relaxations immediately leads to a weak dual.

- ♦ The integer program  $z = \max\{c(x): Ax \leq b, x \in Z_+^n\}$  and the linear program  $w^{LP} = \min\{ub: uA \geq c, u \in R_+^m\}$  form a weak dual pair.
- Suppose that IP and D are a weak-dual pair.
  - \* (i) If D is unbounded, IP is infeasible.
  - $\star$  (ii) If  $x^* \in X$  and  $u^* \in U$  satisfy  $c(x^*) = w(u^*)$  then  $x^*$  is optimal for IP and  $u^*$  is optimal for D.





- A greedy algorithm obtains an optimal solution to a problem by making a sequence of choices. For each decision point in the algorithm, the choice that seems best at the moment is chosen.
- This strategy does not always produce an optimal solution, but sometimes it does.