Chordal Graphs (Golumbic ch. 4)

Interval graphs are chordal (exercin) Interval graphs are important in applications Such as scheduling.

Simplicial vertex NEX) is a chique in G. X E V(G) is simplicial (=) complete Theorem (Dirac 1961) Every churdal graph has a simplicial vertex This leads to a polynomial algorithm for recognizing chordal graphs: While G # omd G has a simplical vertexx GEG-X Gtø vegort Gis not chordal (this later) $If G \neq \phi$ This leads to the notion of a perfect eliming honscheme (p.e.s)

with (ile (ici) proved, we can now show Lemma Every Chordal graph 6 has a simplicial vertex. If G is not complete it has a pair of Non adjacent simplicial vertices. Proof We may assume Gis not complete as every vertex of Ky is simplicial O-----Baoz can is clear (assume Gisconneted) R R simplicial assume lemma holds for all connected chordal graphs 6' with fuer verties than G let a be V s.t abd E and let S be a minimal (a,b)-sep. Note that $x \in A(B)$ is simplicial in GEAUS] (GEBOS]) (GEBOS] (GEBOS]) (GEBOS] (GEBOS]) (GEBOS] (GEBOS]) (GEBOS] (GEBOS]) (GEBOS] (GEBOS]) (GEBOS] (GEBOSor GEAUSD is complete and one of P.g., say p. is in A (Siscompled) non-adj simplicial vertices P. 7 Similarly, either GEBUSD is complete or it has non-adj simplicial p'.g. vertices where g e B If P.q and p',q'exist P.q'is the desired pair if Pigexist and GEBUS] is complete then pib is or if Pigexist and GEBUS] is complete the pib is the Justial if GEAUS] is complete and piglexist, then a gl is the Justial pair [] ę

Back to the proof of Thm 4.1:

$$(\dot{c}) = > (\dot{c}\dot{c}) \quad let \times eV \quad be an arbitrary Simplicial vertex of G. Then $G' = G - x \quad is \ chorded By induction G' has a simplicial ordering $\sigma' = [\sigma_{11}\sigma_{2}^{-1} \cdots \sigma_{n-1}^{-1}] \quad ond \quad Now \sigma = [X, \sigma_{11}^{-1}\sigma_{21}^{-1} \cdots \sigma_{n-1}^{-1}] \quad is a simplicial ordering of G starting with X.$$$$

As Cu has no chord
$$\operatorname{TinT}_{j} \neq \emptyset \bigoplus |i-j| \leq (\operatorname{modulo} k \otimes)$$

Now choon vertices $a_{01}a_{1} - a_{u-1} \circ f T$ such that
 $a_{i} \in \operatorname{TinT}_{i+1}$ $i=0, 1, 2, \dots, k-1$
let bi be the last common vertex of the paths
 $P_{a_{i}a_{i+1}}$ and $P_{a_{i}a_{i-1}}$ in T

Then bie Tin Titl as Palaited Titl and Palaite Ti let Pitl be the (bilith)-path in T Then Pie Ti so (21=) PinPj=pit li-j|>1 mode Moreover PinPitl=36i} i=0,1,2--,1e-1 (by definition of bi) Bot now we see that UPi is a simple cycle in T, contradicting that T is a tree.

(i)=
$$3(ii)$$
 Induction on IVGI
ban can $G = 0$ Given $g = 401, g = g$ $T = 050$
assume claim holds for all chordal G' with $V(G')|<|V(G)|$
Can L G is complete. Take $g = 4V_{2}^{2}, g = g$ $T = 0.5V_{2}^{2}$
Can L G is not complete.
If G is not connected with $G_{1}, G_{2}, \dots, G_{k}$ its compounds
then by induction then an trees $T_{1}, T_{2}, \dots, G_{k}$ its compounds
then by induction then an trees $T_{1}, T_{2}, \dots, G_{k}$ its compounds
then by induction then an trees $T_{1}, T_{2}, \dots, G_{k}$ its compounds
then by induction G_{1} or G_{1} and then we can obtain T
as follows
 T_{1} T_{2} T_{k-1} T_{k}
So we may assume G is connected and not complete
Up a V be simplicial and χ of $A = N[A]$
Then A is a maximal chique in G

Define the nts
$$U_{V}Y$$
 as follows
 $U = \frac{1}{2}u \in A | N(U) \leq K |$
 $Y = \frac{1}{2}u \in A | N(U) \wedge V \cdot A \neq S |$
 $V = \frac{1}{2}u \in A | (A = U \cup Y)$
 $V - A \neq S = 3 G is not complete
 $U \neq S = 3 G is connected$.
By induction (iii) holds for $G' = G = U \cdot U$
So let $T' = (K', S')$ be a tree repr. G'
when K' and the maximal chiques of G' and
 $V = V - U : K_{0}' = \frac{1}{2} \times e K' | \sigma \in X + \frac{1}{2} induces a subtree of T'$
lemark : We shall obtain a tree $T = (K_{1} \in S) = G$
 $V = V + U : K_{0}' = \frac{1}{2} \times e K' | \sigma \in X + \frac{1}{2} induces a subtree of T'$
 $V = V + U = \frac{1}{2} K + \frac{1}{2$$

let BEK bea maximal clique at G's. + YEB Canl B=Y: Then just rename Bby A and let T=TI Can 2 B # Y then let T = T + AB B In both cans let Ku=A Yuell Ko=Ko VoeV-A For yEY we define Ky as follows: 10 Can I (B=Y) let $K_y = K_y - \frac{1}{3} B + \frac{1}{4}$ In can 2 let ky = ky+ }A } In both can, Ky induces a subtree of Tas Ky contains B This completes the proof of Theorem 4.8