
168 8. Network Flows 

Lemma 8.23(c) says that the number of RELABEL operations is 0(n2). Since 
each RELABEL operation takes 0 (n) time, and scanning the neighbours of a vertex 
v in the DISCHARGE procedure between two relabelings of v takes O(n) time 
again, we have an overall running time of 0(n3) plus 0(1) times the number 
of nonsaturating pushes. (Note that each PUSH operation can be done in constant 
time.) 

Since there are at most 0(n3) nonsaturating pushes by Lemma 8.26, the the-
orem is proved. 0 

8.6 Gomory-Hu Trees 

Any algorithm for the MAXIMUM FLOW PROBLEM also implies a solution to the 
following problem: 

MINIMUM CAPACITY CUT PROBLEM 

Instance: A network (G, u, s, t) 

Task: An s-t-cut in G with minimum capacity. 

Proposition 8.28. The MINIMUM CAPACITY CUT PROBLEM can be solved in the 
same running time as the MAXIMUM FLOW PROBLEM, in particular in 0(n3) time. 

Proof: For a network (G, u, s, t) we compute a maximum s-t-f1ow f and define 
X to be the set of all vertices reachable from s in G f. X can be computed with 
the GRAPH SCANNING ALGORITHM in linear time (Proposition 2.17). By Lemma 
8.3 and Theorem 8.5, 8~(X) constitutes a minimum capacity s-t-cut. 0 

In this section we consider the problem of finding a minimum capacity s-t-cut 
for each pair of vertices s, t in an undirected graph G with capacities u : E (G) -+ 

~+ 
This problem can be reduced to the above one: For all pairs s, t E V(G) we 

solve the MINIMUM CAPACITY CUT PROBLEM for (G', u', s, t), where (G', u') arises 
from (G, u) by replacing each undirected edge {v, w} by two oppositely directed 
edges (v, w) and (w, v) with u'«v, w)) = u'«w, u)) = u({u, w}). In this way we 
obtain a minimum s-t-cut for all s, t after G) flow computations. 

This section is devoted to the elegant method of Gomory and Hu [1961], which 
requires only n - 1 flow computations. We shall see some applications in Sections 
12.3 and 20.2. 

Definition 8.29. Let G be an undirected graph and u : E(G) -+ lR+ a capac
ity function. For two vertices s, t E V (G) we denote by Ast their local edge
connectivity, i.e. the minimum capacity of a cut separating sand t. 

The edge-connectivity of a graph is obviously the minimum local edge
connectivity with respect to unit capacities. 



8.6 Gomory-Hu Trees 169 

Lemma 8.30. For all vertices i, j, k E V(G) we have Aik :::: min(Aij, Ajk). 

Proof: Let 8(A) be a cut with i E A, k E V(G) \ A and u(8(A» = Aik. If j E A 
then 8(A) separates j and k, so u(8(A» :::: Ajk. If j E V(G)\A then 8(A) separates 
i and j, so u(8(A» :::: Aij. We conclude that Aik = u(8(A» :::: min(Aij, Ajk). 0 

Indeed, this condition is not only necessary but also sufficient for numbers 
(Aij)l~i,j~n with AU = Aji to be local edge-connectivities of some graph (Exercise 
20). 

Definition 8.31. Let G be an undirected graph and u : E(G) ~ lR+ a capacity 
function. A tree T is called a Gomory-Hu tree for (G, u) ijV(T) = V(G) and 

A.,! = min u(8G (Ce» for all s, t E V(G), 
eEE(P,,) 

where Pst is the (unique) s-t-path in T and,for e E E(T), Ce and V(G) \ Ce are 
the connected components of T - e (i.e. 8G(Ce ) is the fundamental cut of e with 
respect to T). 

We shall see that every graph possesses a Gomory-Hu tree. This implies that 
for any undirected graph G there is a list of n - 1 cuts such that for each pair 
s, t E V(G) a minimum s-t-cut belongs to the list. 

In general, a Gomory-Hu tree cannot be chosen as a subgraph of G. For 
example, consider G = K3,3 and u == 1. Here Ast = 3 for all s, t E V(G). It is 
easy to see that the Gomory-Hu trees for (G, u) are exactly the stars with five 
edges. 

The main idea of the algorithm for constructing a Gomory-Hu tree is as follows. 
First we choose any s, t E V(G) and find some minimum s-t-cut, say 8(A). Let 
B := V(G) \ A. Then we contract A (resp. B) to a single vertex, choose any 
s', t' E B (resp. s', t' E A) and look for a minimum s' -t' -cut in the contracted 
graph G'. We continue this process, always choosing a pair s', t' of vertices not 
separated by any cut obtained so far. At each step, we contract - for each cut 
E(A', B') obtained so far - A' or B', depending on which part does not contain 
s' and t'. 

Eventually each pair of vertices is separated. We have obtained a total of n - 1 
cuts. The crucial observation is that a minimum s' -t' -cut in the contracted graph 
G' is also a minimum s' -t' -cut in G. This is the subject of the following lemma. 
Note that when contracting a set A of vertices in (G, u), the capacity of each edge 
in G' is the capacity of the corresponding edge in G. 

Lemma 8.32. Let G be an undirected graph and u : E(G) ~ lR+ a capacity 
function. Let s, t E V(G), and let 8(A) be a minimum s-t-cut in (G, u). Let now 
s', t' E V (G) \ A, and let (G', u') arise from (G, u) by contracting A to a single 
vertex. Then for any minimum s'-t'-cut 8(K U {AD in (G', u'), 8(K U A) is a 
minimum s'-t'-cut in (G, u). 



170 8. Network Flows 

V(G) \ C 

C 

• 
s 

• t' 

• 
S' 

Fig. 8.3. 

Proof: Let s, t, A, S', t', G' , u' be as above. W.l.o.g. sEA. It suffices to prove 
that there is a minimum s' -t' -cut 8 (A') in (G, u) such that A c A'. So let 8 (C) 
be any minimum s'_t'-cut in (G, u). W.l.o.g. SEC. 

Since u is submodular (cf. Lemma 2.1 (a», we have u(8(A» + u(8(C» ::=: 
u(8(A n C» + u(8(A U C». But 8(A n C) is an s-t-cut, so u(8(A n C» ::=: ASI = 
u(8(A». Therefore u(8(A U C» .:s u(8(C» = AS'I' proving that 8(A U C) is a 
minimum s'_t'-CUt. (See Figure 8.3.) 0 

Now we describe the algorithm which constructs a Gomory-Hu tree. Note that 
the vertices of the intermediate trees T will be vertex sets of the original graph; 
indeed they form a partition of V(G). At the beginning, the only vertex of T is 
V(G). In each iteration, a vertex of T containing at least two vertices of G is 
chosen and split into two. 

GOMORy-Hu ALGORITHM 

Input: An undirected graph G and a capacity function u : E (G) --+ lR+ 

Output: A Gomory-Hu tree T for (G, u). 

CD Set VeT) := (V(G)} and E(T) := 0. 

G) Choose some X E VeT) with IXI ::=: 2. If no such X exists then go to @. 

Q) Choose s, t E X with s -# t. 
For each connected component C of T - X do: Let Sc := UYEV(C) Y. 
Let (G' , u' ) arise from (G, u) by contracting Sc to a single vertex Vc for 

each connected component. C of T - X. 
(So V(G' ) = XU (vc : C is a connected component of T - X}.) 



8.6 Gomory-Hu Trees 171 

@ Find a minimum s-t-cut o(A') in (G', u'). Let B' := V(G') \ A'. 

Set A := ( usc) U (A' n X) and B := ( usc) U (B' n X). 
vcEA'\X VcEB'\X 

c» Set VeT) := (V(T) \ {X}) U {A n X, B n X}. 
For each edge e = {X, Y} E E(T) incident to the vertex X do: 

If Y <; A then set e' := {A n X, Y} else set e' := {B n X, Y}. 
Set E(T) := (E(T) \ (e}) U Ie'} and wee') := wee). 

Set E(T) := E(T) U {{A n X, B n X}} and 
w({A n X, B n X}) := u'(oG,(A'». 

Go to G). 

® Replace all {x} E VeT) by x and all {{x}, {y}} E E(T) by {x, y}. Stop. 

(a) 

(b) 

Fig. 8.4. 



172 8. Network Flows 

Figure 8.4 illustrates the modification of T in G). To prove the correctness of 
this algorithm, we first show the following lemma: 

Lemma 8.33. Each time at the end of @ we have 

(a) AU B = V(G) 
(b) E(A, B) is a minimum s-t-cut in (G, u). 

Proof: The elements of V(T) are always nonempty subsets of V(G), indeed 
V(T) constitutes a partition of V(G). From this, (a) follows easily. 

We now prove (b). The claim is trivial for the first iteration (since here G' = 
G). We show that the property is preserved in each iteration. 

Let C I, ... , C k be the connected components of T - X. Let us contract them 
one by one; for i = 0, ... , k let (Gi , Ui) arise from (G, u) by contracting each 
of SCI' ... ,Sc, to a single vertex. So (Gk. Uk) is the graph which is denoted by 
(G', u') in Q) of the algorithm. 
Claim: For any minimum s-t-cut 8(Ai) in (Gi , Ui), 8(Ai_l) is a minimum 
s-t-cut in (Gi - I , Ui-I), where 

A . ._ {(Ai \ {vc,}) USc, 
l-I·- Ai 

if vc, E Ai 
if ve, ~ Ai 

Applying this claim successively for k, k - 1, ... , I implies (b). 
To prove the claim, let 8(Ai) be a minimum s-t-cut in (G i , Ui). By our as

sumption that (b) is true for the previous iterations, 8(Sc,) is a minimum Si-ti-cut 
in (G, u) for some appropriate Si, ti E V(G). Furthermore, s, t E V(G) \ Sc,. So 
applying Lemma 8.32 completes the proof. 0 

Lemma 8.34. At any stage of the algorithm (until @ is reached) for all e E E (T) 

w(e) = U (8G (u z)), 
ZEc" 

where Ce and V(T) \ Ce are the connected components ofT - e. Moreover for all 
e = {P, Q} E E(T) there are vertices PEP and q E Q with Apq = w(e). 

Proof: Both statements are trivial at the beginning of the algorithm when T 
contains no edges; we show that they are never violated. So let X be vertex of 
T chosen in (6) in some iteration of the algorithm. Let s, t, A', B', A, B be as 
determined in Q) and @ next. W.l.o.g. assume sEA'. 

Edges of T not incident to X are not affected by G). For the new edge {A n 
X, B n X}, w(e) is clearly set correctly, and we have As! = w(e), sEA n X, 
t E B n X. 

So let us consider an edge e = {X, Y} that is replaced bye' in G). We assume 
w.l.o.g. Y ~ A, so e' = {A n X, Y}. Assuming that the assertions were true for e 
we claim that they remain true for e'. This is trivial for the first assertion, because 
w(e) = w(e') and U (8G (UZEc" Z)) does not change. 



8.6 Gomory-Hu Trees 173 

To show the second statement, we assume that there are p EX, q E Y with 
Apq = wee). If pEA n X then we are done. So henceforth assume that p E B n X 
(see Figure 8.5). 

y 

·s 

Anx 

Fig. 8.5. 

• t • p 

Bnx 

We claim that Asq = Apq. Since Apq = wee) = wee') and sEA n X, this will 
conclude the proof. 

By Lemma 8.30, 
Asq ::: min{Ast,Atp,Apq }. 

Since by Lemma 8.33(b) E(A, B) is a minimum s-t-cut, and since s, q E A, we 
may conclude from Lemma 8.32 that Asq does not change if we contract B. Since 
t, P E B, this means that adding an edge {t, p} with arbitrary high capacity does 
not change Asq. Hence 

Asq ::: min{Asr. Apq }. 

Now observe that Ast ::: Apq because the minimum s-t-cut E(A, B) also separates 
p and q. So we have 

Asq ::: Apq. 

To prove equality, observe that wee) is the capacity of a cut separating X and 
Y, and thus sand q. Hence 

Asq < wee) 

This completes the proof. o 

Theorem 8.35. (Gomory and Hu [1961]) The GOMORy-Hu ALGORITHM works 
correctly. Every undirected graph possesses a Gomory-Hu tree, and such a tree is 
found in 0 (n4) time. 



174 8. Network Flows 

Proof: The complexity of the algorithm is clearly determined by n - 1 times 
the complexity of finding a minimum s-t-cut, since everything else can be imple
mented in O(n3) time. Using the GOLDBERG-TARJAN ALGORITHM (Theorem 8.27) 
we obtain the O(n4) bound. 

We prove that the output T of the algorithm is a Gomory-Hu tree for (G, u). 
It should be clear that T is a tree with VeT) = V(G). Now let s, t E V(G). Let 
Pst be the (unique) s-t-path in T and, for e E E(T), let Ce and V(G) \ Ce be the 
connected components of T - e. 

Since 8(Ce ) is an s-t-cut for each e E E(Pst ), 

Ast:S min u(8(Ce». 
eEE(P,,) 

On the other hand, a repeated application of Lemma 8.30 yields 

Ast :::: min Avw. 
{v,wjEE(P,,) 

Hence applying Lemma 8.34 to the situation before execution of @ (where each 
vertex X of T is a singleton) yields 

Ast:::: min u(8(Ce», 
eEE(P,,) 

A similar algorithm for the same task (which might be easier to implement) 
was suggested by Gusfield [1990]. 

8.7 The Minimum Cut in an Undirected Graph 

If we are only interested in a minimum capacity cut in an undirected graph G 
with capacities u : E(G) --+ lR+, there is a simpler method using n - 1 flow 
computations: just compute the minimum s-t-cut for some fixed vertex s and each 
t E V (G) \ {s}. However, there are more efficient algorithms. 

Hao and Orlin [1994] found an O(nm log ~ )-algorithm for determining the 
minimum capacity cut. They use a modified version of the GOLDBERG-TARJAN 

ALGORITHM. 

If we just want to compute the edge-connectivity of the graph (i.e. unit capac
ities), the currently fastest algorithm is due to Gabow [1995] with running time 
Oem +A2n log A(~»' where A(G) is the edge-connectivity (observe that m :::: An). 
Gabow's algorithm uses matroid intersection techniques. We remark that the MAX

IMUM FLOW PROBLEM in undirected graphs with unit capacities can also be solved 
faster than in general (Karger and Levine [1998]). 

Nagamochi and Ibaraki [1992] found a completely different algorithm to de
termine the minimum capacity cut in an undirected graph. Their algorithm does 
not use max-flow computations at all. In this section we present this algorithm 
in a simplified form due to Stoer and Wagner [1997] and independently to Frank 
[1994]. We start with an easy definition. 


