Gomory - HU trees (from Korted Vygen Section 8.6)

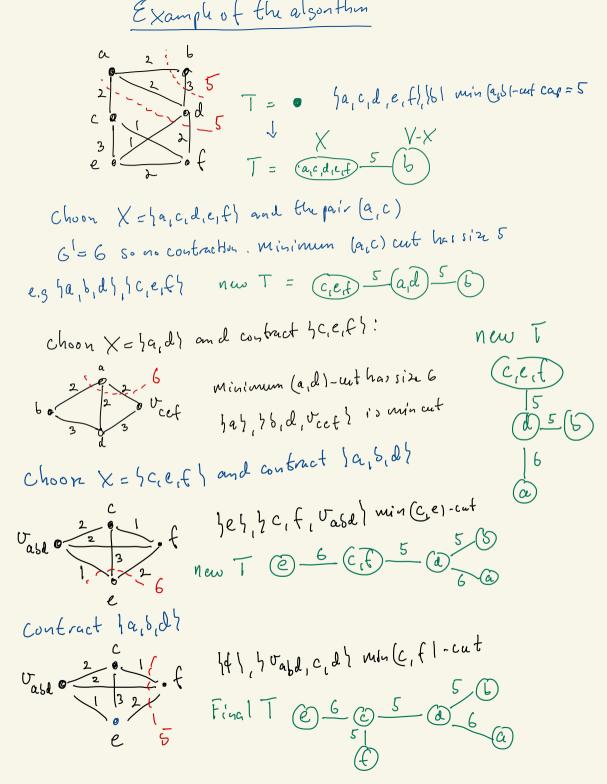
Definition 831 Let G=(V,E) and U:E->Rt
A tree T is a Gamory-HU tree for G if
. V(T)=V(G)
. V(G):
$$\lambda_6(s,t) = \min \left\{ u(\delta_6(C_c)) \right\} e \in E(P_{SE}) \right\}$$

Here Pst is the unique (St)-path in T and finall ee E(T)
Ce iV-Ce are the vertex solution the 2 connected components of
T-e $V-C_e$
In G we denote by $\delta(C_e)$ the Sct of edges
Sctween Ce and V-Ce C_e
Goal: prove that every $G_1 u$ $\delta(C_e)$
has a Gomory-HU tree
Consequence: $H G_1 u = U = 0$ $V = 0$ $U = 0$ $V = 0$

Verige Vone of then cuts is a minimum (P.31-cut

emma 8.30
$$\forall i_{1j} i_{k} \in V(G)$$
 we have $\lambda_{ik} \geq min j \lambda_{ij} \lambda_{jk} i_{k}^{2}$
where λ_{ij} is the maximum domber of edge-disjonent (i_{ij})-pater is a
proof: Consider a minimum (i_{k})-cut ($\chi_{i}\overline{\chi}$)
if $j \in \chi$ then $\lambda_{ij} \leq \lambda_{kk} =$
Main idea:
• Choose arbitrary site V and find a min($k \in I$ -cut ($A_{i}B$) ($\lambda_{k} \in u(S(A)$))
• If max 1(A_{i} , IBI) $\geq \chi$ then may assume $IBI \geq \chi$.
• Contract A to a single vertex and denote the new thing graythy G/A
• Choose distributive vertices s_{i} of in B
• Choose distributive (i_{i} of A
• Choose distributive (i_{i} of A
• Choose distributive vertices s_{i} of in B
• Find a minimum (i_{i} of 1-cut is G/A
• confirme this process by always choosing new vertices s_{i} of that can not χ_{i} and i_{i} the noncontracted part
• at each step, for every previously ditermined cut ($A_{i}^{1}B^{1}$) we contract
one of A_{i} is so that s_{i} or i_{i} the noncontracted part
The process and subtent each parts of vertices i_{i} subtraction is i_{i}
 $Segarahid by act least one of the proviously ditermined
cuts (there is no non-contracted set of size $\geq \chi$)
We whall prove that the $n-1$ cuts dutive mined
 $Give Ws \in Gomp on - Hu tree T$$

$$\frac{Gomay - Hu alsonthin}{Gomay - Hu alsonthin}$$
(1) Initiative V(D)=1/V(G)}, E(T)=Ø Corrent T: 1/(G)]
(2) Choon vertex X EV(T) such that $|X| \ge 2$ as a vertex at $4 \le 1$. If nowed X to $4 \le 1$
(3) Choon vertex X EV(T) such that $|X| \ge 2$ as a vertex at $4 \le 1$. If nowed X to $4 \le 1$
(4) Choon s, $t \in X$ with eff:
For each connected component C of T-X
Contract $S_{c} = UY$ into one vertex U_{c} (in G)
(5) Choon the resulting graph G has $V(G') \ge X \circ \sigma_{c} | C$ (is a component of T-X)
(4) Find a minimum $(b_{c}t) - wt (a_{1}^{t}, B^{t})$ in (C_{1}^{t}, w) and set
 $A = (\bigcup_{S_{c} \in A^{t}, X}) \cup (A^{t}, X), B = (\bigcup_{S_{c} \in B^{t}, X}) \cup (B^{t}, X)$
(5) Let $V(T) = (V(T) - |X|) \cup (|AnX|/(BnX)]$
(6) Let $V(T) = (V(T) - |X|) \cup (|AnX|/(BnX)]$
(7) $Y \in A$ then $e! = \frac{1}{2} AnX, Y \} elin e^{t} = \frac{1}{2} BnX_{1}Y_{1}$
 $E(T) := [E(T) - c] + e^{t}$ and $w(e^{t}) := w(c)$
(7) $E(T) := E(T) + AnX, BAX with $w(AnX, BAX) = u^{t}(S_{c}, (A^{t}))$
(8) $C = to (2)$
(9) A^{t}
(9) $A = \frac{1}{2} A_{1}X = \frac{1}{2} A$$



Correctness of the algorithm:

Lemma 8.33 Each time step (4) ends we have (a) AUB=V(6) and (b) (A,B) is a minimum (s,t)-aut in (G,u) (b) clearly holds after the first execution of (4) as 61=6 Proof (a) is clear We now show that (b) is preserved in each iteration of (4) $\mathcal{C}_{\mathcal{C}_{1}}$ let CI, CZI ... Ck be the connected components of T-X Consider contracting C, 1C2 - Cu one by one: Ό C_k For i=0,1,2...k the (Giui) arrive from (Gulby contractions each of scillscill, scill to a single vertex UC; for je EW Thus (Gu, un) is (G', u') after executions (3) in the algorithm <u>Claim</u> V minimum (set)-cut (Ai, V(Gi)-Ai) in (Gi, ui): $\begin{array}{c} (A_{i-1}, V(G_{i}) - A_{i-1}) & \text{is a minimum (set)-ut in (G_{i-1}, u_{i-1})} \\ where A_{i-1} = \begin{pmatrix} (A_i - \sigma_{c_i}) \cup S_{c_i} & \text{if } \sigma_{c_i} \in A_i \\ A_i & \text{if } \sigma_{c_i} \notin A_i \\ \end{array}$ Applying the claim in the order k, k-1, ..., 2,1 proves (b)

Since (B) (\$1 hold for e befor iteration i we see that
(B) still holds for e'= (AnX, Y) as
$$w(e^{i}) = w(e) = u(S_{0}(\bigcup_{z \in C_{e}}))$$

It remains to prove that (\$1 holds for e':
let $p \in X, q \in Y$ have $pq = w(e)$ (they exist as (\$1 holds after
iteration i - 1)
If $p \in An \times we are clone = q \in Y$ and e moved to e' (Anx)
So assome $p \in Bn \times :$ ($q = e^{i}$ ($s = -e^{i}$)
If $h_{sq} = h_{pq}$ we are done as then we have
 $h_{sq} = h_{pq} = w(e) = w(e^{i})$ ($w(e^{i})$ is set to $w(e)$ in stap(51)
So we wont to prove h_{sq} = h_{pq}
lemme 8.200 Sives : $h_{sq} \ge min \frac{1}{2}h_{se}, h_{pq}, h_{pq}$
By lemma 8.306 ($A_{1}B$) is a min (S, t) - cut and
 $S_{1} \in GA$ So h_{sq} does not chanse when we contact B
(by lemma 8.32)
we also have $f_{1}p \in B$ So h_{sq} does not chanse if
 $we add an edge t - p with as capacity.$
This shows that
 $h_{sq} \ge min \frac{1}{2}h_{st}, h_{pq}$ (Δ)

$$\begin{split} \lambda_{SE} &\equiv \lambda_{PQ} \quad \text{since } (A,B) \text{ is also a } (P,q)-act \\ & \text{w(c) is the capacity of a cut separatus } X and Y \\ & \text{and thus separatus } s and q & (a) seX, qeY) \\ & \text{This shows that } \lambda_{SQ} &\leq w(e) = \lambda_{PQ} \\ & \text{So } (A1 \text{ implies that } \lambda_{SQ} &= \lambda_{PQ} \text{ proving that } (S) \\ & \text{holds for e' after iteration i.} \\ & \text{D.} \\ \hline \text{Theorem 8.35 The algorithm is correct and it } \\ & \text{finds a Gownong-Ho force in polynomial time} \\ \hline \text{Poot : Clear that the algorithm is polynomial } \\ & \text{finds a Gownong-Ho force in polynomial } \\ \hline \text{theorem 8.35 The algorithm is polynomial } \\ \hline \text{theorem 8.36 The algorithm is polynomial } \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ & \text{Invining time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{towning time bounded by fine for } (M-1) & \text{mex flow calcolations }) \\ \hline \text{total the output of the algorithm is correct and it \\ \hline \text{to at the output of the step (box calcolations)} \\ \hline \text{total the output of the step (box calcolations)} \\ \hline \text{total the output of the step (Given Compound of T-e \\ \hline \text{total the output bound is applying lemme 8.30 repeahdly sives \\ & \lambda_{SE} \geq \min h (W(S(e)) | ee P_{S}(E) \\ \hline \text{top lies that } \lambda_{SE} \geq \min h (W(S(e)) | ee P_{S}(E) \\ \hline \text{top lies that } \lambda_{SE} \geq \min h (W(S(e)) | ee P_{S}(E) \\ \hline \text{how } (\nabla I \text{ implue that } \chi_{SE} = \min h (W(S(e)) | ee P_{S}(E) \\ \hline \text{top lies that } \end{pmatrix} \\ \end{cases}$$