
418 14 Weighted matchings

derived interesting partial results. Let us pose two exercises regarding this
problem.

Exercise 14.4.6. Extend Corollary 7.2.6 to regular bipartite multigraphs.

Exercise 14.4.7. Let G be a bipartite graph, and let L(G) be the lattice in
ZE generated by the incidence vectors of the perfect matchings of G, and
H(G) the linear span of L(G) in RE . Show that L(G) = H(G) ∩ ZE [Lov85].
Hint: Use Exercise 14.4.6.

The result of Exercise 14.4.7 does not extend to arbitrary graphs, as shown
by [Lov85]: the Petersen graph provides a counterexample. The general case
is treated in [Lov87]. Related problems can be found in [JuLe88, JuLe89]
and [Rie91], where lattices corresponding to the 2-matchings of a graph and
lattices corresponding to the bases of a matroid are examined.

For some practical applications in which n is very large even algorithms for
determining an optimal matching with complexity O(n3) are not fast enough;
in this case, one usually resorts to approximation techniques. In general, these
techniques will not find an optimal solution but just a reasonable approxima-
tion; to make up for this, they have the advantage of being much faster. We
refer the interested reader to [Avi78, Avi83] and to [GrKa88]. Two alterna-
tives to using heuristics for large values of n are either to use appropriate
LP-relaxations to determine minimal perfect matchings on suitable sparse
subgraphs, or to use post-optimization methods. We refer to [GrHo85] and to
[DeMe91]; one of the best practical methods at present seems to be the one
given in [ApCo93].

14.5 The Chinese postman

This section is devoted to an interesting application of optimal matchings in
K2n. The following problem due to Kwan [Kwa62] concerns a postman who
has to deliver the mail for a (connected) system of streets: our postman wants
to minimize the total distance he has to walk by setting up his tour suitably.
This problem is nowadays generally known as the Chinese postman problem.

Problem 14.5.1 (Chinese postman problem, CPP). Let G = (V, E) be
a connected graph, and let w : E → R+

0 be a length function on G. We want
to find a closed walk C of minimal length w(C) which contains each edge of
G at least once.6

6Note that we view the edges of our graph as (segments of) streets here, and
the vertices as intersections (or dead ends), so that each edge certainly needs to
be traversed to deal with the houses in this street; in this rather simplistic model
we neglect the need for having to cross the street to deliver the mail to houses on
opposite sides. Hence it might be more realistic to consider the directed case and
use the complete orientation of G; see Exercise 14.5.6.



14.5 The Chinese postman 419

If G should be Eulerian, the solution of the CPP is trivial: any Euler tour
C will do the job. Recall that G is Eulerian if and only if each vertex of
G has even degree (Theorem 1.3.1) and that an Euler tour C can then be
constructed with complexity O(|E|) (Example 2.5.2).

If G is not Eulerian, we use the following approach. Let X be the set of
all vertices of G with odd degree. We add a set E′ of edges to G such that
the following three conditions are satisfied:

(a) Each edge e′ ∈ E′ is parallel to some edge e ∈ E; we extend w to E′ by
putting w(e′) = w(e).

(b) In (V, E′), precisely the vertices of X have odd degree.
(c) w(E′) is minimal: w(E′) ≤ w(E′′) for every set E′′ satisfying (a) and (b).

Then (V, E
.∪ E′) is an Eulerian multigraph, and any Euler tour induces a

closed walk of minimal length w(E)+w(E′) in G. It is rather obvious that any
solution of CPP can be described in this way. We now state – quite informally
– the algorithm of Edmonds and Johnson [EdJo73] for solving the CPP. Note
that |X| is even by Lemma 1.1.1.

Algorithm 14.5.2. Let G = (V, E) be a connected graph with a length func-
tion w : E → R+

0 .

Procedure CPP(G, w; C)

(1) X ← {v ∈ V : deg v is odd};
(2) Determine d(x, y) for all x, y ∈ X.
(3) Let H be the complete graph on X with weight function d(x, y). Determine

a perfect matching M of minimal weight for (H, d).
(4) Determine a shortest path Wxy from x to y in G and, for each edge in

Wxy, add a parallel edge to G (for all xy ∈ M). Let G′ be the multigraph
thus defined.

(5) Determine an Euler tour C ′ in G′ and replace each edge of C ′ which is
not contained in G by the corresponding parallel edge in G. Let C be the
closed walk in G arising from this construction.

Step (2) can be performed using Algorithm 3.8.1; however, if |X| is small, it
might be better to run Dijkstra’s algorithm several times. Determining short-
est paths explicitly in step (4) can be done easily by appropriate modifications
of the algorithms already mentioned; see Exercise 3.8.3 and 3.6.3. In the worst
case, steps (2) and (4) need a complexity of O(|V |3). Step (3) can be executed
with complexity O(|X|3) by Result 14.4.5; note that determining a perfect
matching of minimal weight is equivalent to determining an optimal match-
ing for a suitable auxiliary weight function; see Section 14.1. Finally, step (5)
has complexity O(|E′|) by Example 2.5.2. Thus we get a total complexity of
O(|V |3).

It still remains to show that the algorithm is correct. Obviously, the con-
struction in step (4) adds, for any matching M of H, a set E′ of edges to G
which satisfies conditions (a) and (b) above; the closed walk in G arising from



420 14 Weighted matchings

this construction has length w(E) + d(M), where d(M) is the weight of M
with respect to d. Thus it is reasonable to choose a matching M of minimal
weight in step (3). However, it is not immediately clear that there cannot be
some other set E′ of edges leading to a solution of even smaller weight. We
need the following lemma.

Lemma 14.5.3. Let G = (V, E) be a connected graph with length function
w : E → R+

0 . Moreover, let H be the complete graph on a subset X of V of
even cardinality; the edges of H are assigned weight d(x, y), where d denotes
the distance function in G with respect to w. Then, for each perfect matching
M of H with minimal weight and for each subset E0 of E for which any
two vertices of X have the same distance in G and in (V, E0), the inequality
d(M) ≤ w(E0) holds.

Proof. Let M = {x1y1, . . . , xnyn} be a perfect matching with minimal weight
in H. Then d(M) = d(x1, y1) + . . . + d(xn, yn). Moreover, let Pi be a shortest
path from xi to yi in (V, E0) (for i = 1, . . . , n). By hypothesis, w(Pi) =
d(xi, yi). We claim that no edge e with w(e) �= 0 can be contained in more
than one of the paths Pi; if we prove this claim, the assertion of the lemma
follows. Suppose our claim is wrong. Then we may assume

P1 = x1
P ′

1 u
e

v
P ′′

1 y1 and P2 = x2
P ′

2 u
e

v
P ′′

2 y2,

which implies

d(x1, y1) + d(x2, y2) = d(x1, u) + w(e) + d(v, y1) + d(x2, u) + w(e) + d(v, y2)
> d(x1, u) + d(u, x2) + d(y1, v) + d(v, y2)
≥ d(x1, x2) + d(y1, y2).

But then replacing x1y1 and x2y2 by x1x2 and y1y2 in M would yield a perfect
matching of smaller weight, a contradiction. ��
Theorem 14.5.4. Algorithm 14.5.2 calculates with complexity O(|V |3) a so-
lution of the CPP.

Proof. We already know that Algorithm 14.5.2 yields a closed walk of length
w(E) + d(M) containing each edge of G, where d(M) is the minimal weight
of a perfect matching of (H, d).

Now suppose that E′ is an arbitrary set of edges satisfying conditions (a)
to (c). Then E′ induces a closed walk of weight w(E) + w(E′) which contains
all edges of G. We have to show w(E′) ≥ d(M). Suppose Z is a connected
component of (V, E′) containing at least two vertices. Then we must have
Z ∩X �= ∅: otherwise, we could omit all edges of E′ which are contained in Z
and the remaining set of edges would still satisfy (a) and (b). As X is the set
of vertices of (V, E′) with odd degree, |Z ∩X| has to be even by Lemma 1.1.1.
Thus the connected components of (V, E′) induce a partition X1, . . . , Xk of



14.5 The Chinese postman 421

X into sets of even cardinality so that any two vertices in Xi are connected
by a path in E′.

Let x, y ∈ Xi, and let Pxy be the path from x to y in E′. Then Pxy must
be a shortest path from x to y in G: otherwise, the edges of Pxy could be
replaced by the edges of a shortest path from x to y, which would yield a set
E′′ of edges satisfying (a) and (b) and w(E′′) < w(E′). Now, trivially, Pxy is
also a shortest path from x to y in (V, E′). Denote the connected component
of (V, E′) corresponding to Xi by Zi, and let E′

i be the set of edges of E′ which
have both end vertices in Zi. Moreover, let Hi be the complete graph on Zi

with weights d(x, y) (where d is the distance function in G or in (Zi, E
′
i)).

Then Lemma 14.5.3 yields d(Mi) ≤ w(E′
i) for each perfect matching Mi of

minimal weight in Hi. Obviously, M1 ∪ . . . ∪ Mk is a perfect matching of H,
and E′ = E′

1 ∪ . . . ∪ E′
k. Hence we obtain the desired inequality

w(E′) = w(E′
1) + . . . + w(E′

k) ≥ d(M1) + . . . + d(Mk) ≥ d(M). ��

Example 14.5.5. Let G be the graph displayed in Figure 14.6. Then X =
{x, y, z, w}, so that we get the complete graph H shown in Figure 14.7.
The edges xw and yz form a perfect matching of minimal weight of H; the
corresponding paths are (x, a, w) and (y, x, z). Hence we replace the corre-
sponding edges in G by two parallel edges each; this yields the multigraph
G′ in Figure 14.8. Now it is easy to find an Euler tour in G′, for example
(x, y, b, w, c, z, x, y, a, x, a, w, a, z, x) with length 30 + 4 = 34.

b w c

y
a

z

x

5 5

3 3

5 1 5

11

Fig. 14.6. A graph

Exercise 14.5.6. We consider the directed version of the CPP: let G be a
digraph with a nonnegative length function w; we want to find a directed
closed walk of minimal length containing each edge of G at least once. Hint:
Reduce this problem to the problem of determining an optimal circulation
[EdJo73].



422 14 Weighted matchings

y z

w

x

3

1

2

2

1

3

Fig. 14.7. The complete graph H

b w c

y
a

z

x

Fig. 14.8. The corresponding Eulerian multigraph

Theorem 14.5.4 and Exercise 14.5.6 (together with a corresponding al-
gorithm for determining an optimal circulation) show that there are good
algorithms for the CPP for directed graphs as well as for undirected graphs.
In contrast, the CPP for mixed graphs is NP-complete, so that most likely
there is no polynomial solution; see [Pap76] or [GaJo79]. A cutting plane al-
gorithm for the mixed CCP is in [NoPi96], and some applications of the CPP
are discussed in [Bar90].

14.6 Matchings and shortest paths

This section deals with applications of matchings to the problem of deter-
mining shortest paths in a network on an undirected graph without cycles of
negative length. We remind the reader that our usual transformation to the



14.6 Matchings and shortest paths 423

directed case – replacing a graph G by its complete orientation – will not work
in this situation, because an edge e = {u, v} of negative weight w(e) in (G, w)
would yield a directed cycle u v u of negative length 2w(e) in (

→
G, w),

whereas all the algorithms given in Chapter 3 apply only to graphs withouts
such cycles. We describe a solution for this path problem below; it is due to
Edmonds [Edm67a].

The first step consists of transforming the given problem to the problem of
determining an f -factor in an appropriate auxiliary graph; this problem was
already mentioned at the end of Section 13.5. In our case, the only values f(v)
will take are 1 and 2; however, the auxiliary graph might contain loops. Note
that a loop {v, v} adds 2 to the degree deg v of a vertex v. In what follows,
we call a path from s to t an {s, t}-path.
Lemma 14.6.1. Let N = (G, w) be a network on a graph G = (V, E) with
respect to a weight function w : E → R, and assume that there are no cycles of
negative length in N . Let s and t be two vertices of G, and let G′ be the graph
which results from adding the loop {v, v} to G for each vertex v �= s, t. Extend
the weight function w to G′ by putting w(v, v) = 0. Then each {s, t}-path P
in G may be associated with an f-factor F = F (P ) in G′, where f is given by

f(s) = f(t) = 1 and f(v) = 2 for all v �= s, t, (14.9)

so that the weight of P always equals that of the corresponding f-factor F .
Moreover, the problem of determining a shortest {s, t}-path in (G, w) is equiv-
alent to determining a minimal f-factor in (G′, w).

Proof. Given an {s, t}-path P in G, put

F = P ∪ {{v, v} : v is not contained in P} .

Obviously, F is an f -factor for G′, as the loop {v, v} increases the degree of v
in F to 2 whenever v is not contained in P . By our definition of w for loops,
w(F ) = w(P ).

Conversely, let F be an f -factor for G′; we want to construct an {s, t}-path
P from F . As s has degree 1 in F , there is exactly one edge sv1 in F . Now v1

has degree 2 in F , so that there exists precisely one further edge in F incident
with v1, say v1v2; note that this edge cannot be a loop. Continuing in this
manner, we construct the edge sequence of a path P with start vertex s in G.
As the only other vertex of degree 1 in F is t, t must be the end vertex of P .

Note that it is quite possible that there are not only loops among the
remaining edges of F : these edges might contain one or more cycles. In other
words, in general we will have F �= F (P ), so that the correspondence given
above is not a bijection. However, our assumption that there are no cycles of
negative length in (G, w) guarantees at least w(P ) ≤ w(F ), which proves the
final assertion. ��

Next we show how one may reduce the determination of a minimal f -factor
for the special case where f(v) ∈ {1, 2} to the determination of a minimal



424 14 Weighted matchings

perfect matching in an appropriate auxiliary graph whose size is polynomial
in the size of the original graph. As already mentioned in Section 13.5, the
general existence problem for arbitrary f -factors can be reduced to the general
existence problem for perfect matchings; see [Tut54].

Lemma 14.6.2. Let G = (V, E) be a graph (where loops are allowed), and let
f : V → N be a function with f(v) ∈ {1, 2} for all v ∈ V . Then the f-factors
of G correspond to perfect matchings of a suitable auxiliary graph H with at
most 5|E| edges and at most 2|V | + 2|E| vertices. If there also is a weight
function w : E → R on G given, a weight function w on H can be defined
in such a way that the weight w(F ) of an f-factor F is always equal to the
weight w(M) of the corresponding perfect matching M .

Proof. Our transformation consists of two steps. First, the given f -factor prob-
lem for G is transformed to an equivalent problem for an auxiliary graph H ′

for which each non-loop edge is incident with at least one vertex v satisfying
f(v) = 1. Thus let e = uv ∈ E be an edge with u �= v and f(u) = f(v) = 2.
We subdivide e by introducing two new vertices ue, ve; replace the edge e by
the path

Pe : u ue ve v;

and extend f by putting f(ue) = f(ve) = 1. By performing this operation
for all edges e = uv with f(u) = f(v) = 2 and u �= v, we obtain the desired
graph H ′. Now let F be an f -factor in G. Then F yields an f -factor F ′ in
H ′ as follows: we replace each edge e = uv ∈ F with f(u) = f(v) = 2 and
u �= v by the edges uue and vve; moreover, we add for each edge e = uv with
f(u) = f(v) = 2 and u �= v which is not in F the edge ueve to F ′. Under this
operation, each f -factor in H ′ actually corresponds to an f -factor in G. We
can also make sure that the weights of corresponding f -factors F and F ′ are
equal: for each edge e = uv with f(u) = f(v) = 2 and u �= v, we define the
weights of the edges on Pe as

w(uue) = w(vve) =
w(e)

2
and w(ueve) = 0.

In the second step of the transformation, we define a graph H which results
from H ′ by splitting each vertex v with f(v) = 2 into two vertices:7 we replace
v by two vertices v′ and v′′; we replace each edge e = uv with u �= v by two
edges e′ = uv′ and e′′ = uv′′; finally, each loop {v, v} with f(v) = 2 is
replaced by the edge v′v′′. These operations are well-defined because of the
transformations performed in the first step: H ′ does not contain any edges
e = uv with f(u) = f(v) = 2 and u �= v. Let us denote the resulting graph
by H.

It is now easy to see that the f -factors F ′ of H ′ correspond to the perfect
matchings M of H. Note that at most one of the two parts of a split edge

7Note that this condition can hold only for old vertices, that is, vertices which
were contained in G.



14.6 Matchings and shortest paths 425

e = uv (with f(v) = 2) can be contained in a perfect matching M of H, since
we must have f(u) = 1 in that case. Note that this correspondence between
f -factors and perfect matchings is, in general, not bijective: if F ′ contains two
edges e1 = u1v and e2 = u2v (where f(v) = 2 and f(u1) = f(u2) = 1), M
might contain either u1v

′ and u2v
′′ or u1v

′′ and u2v
′. Thus, in general, there

are several perfect matchings of H which correspond to the same f -factor of
H ′. However, the weights of corresponding f -factors and perfect matchings
agree if we put

w(e′) = w(e′′) = w(e)

for split edges e′ and e′′. ��
By performing the transformations of Lemmas 14.6.1 and 14.6.2 succes-

sively, we obtain the desired reduction of the determination of a shortest path
between two vertices s and t in an undirected network (G, w) without cy-
cles of negative length to the determination of a perfect matching of minimal
weight in an appropriate auxiliary graph H (with respect to a suitable weight
function). As the number of vertices of H is linear in the number of vertices
of G, Result 14.4.5 yields the following conclusion.

Theorem 14.6.3. Let N = (G, w) be a network on a graph G = (V, E), where
w : E → R, and let s and t be two vertices of G. If N does not contain cycles
of negative length, one may determine with complexity O(|V |3) a shortest path
from s to t. ��
Example 14.6.4. Consider the network (G, w) given in Figure 14.9. The bold
edges form a path

P : s c b t

of length w(P ) = 0, which corresponds to the f -factor

F = {{a, a}, sc, cb, bt}

of weight w(F ) = 0 in the graph G′ shown in Figure 14.10, where f(a) =
f(b) = f(c) = 2 and f(s) = f(t) = 1. Again, F consists of the bold edges.

Now we perform the transformations of Lemma 14.6.2. First, when H ′ is
constructed, the edges e = ab and g = bc are divided into paths of length 3.
We obtain the auxiliary graph H ′ with the f -factor

F ′ = {{a, a}, sc, ccg, bbg, bt, aebe}

corresponding to F , where f(a) = f(b) = f(c) = 2 and f(v) = 1 for all other
vertices v. Note that F ′ indeed has weight w(F ′) = 0. Figure 14.11 shows H ′

and F ′; as usual, F ′ consists of the bold edges.



426 14 Weighted matchings

t

b

s

a c
3 4

−1

1

2

−33

−2

Fig. 14.9. A path in G

t

b

s

a c

3 4

−1

1

2

−33

−2

e g

0

0 0

Fig. 14.10. The corresponding f -factor in G′

Finally, in the second step of the transformation, the three vertices a, b, c
with f(a) = f(b) = f(c) = 2 are divided into two vertices each. This yields
the graph H shown in Figure 14.12 and the perfect matching



14.6 Matchings and shortest paths 427

K = {aa′, sc′, c′′cg, b
′′bg, b

′t, aebe}

of weight w(K) = 0 corresponding to the f -factor F ′.

t

b

s

a cae be
cgbg

−1

1

2

−33

−2

0

0 0
3/2 0 3/2 2 0 2

Fig. 14.11. The corresponding f -factor in H ′

Exercise 14.6.5. Determine an {s, t}-path of shortest length as well as the
corresponding f -factors and a corresponding perfect matching of minimal
weight for the network of Example 14.6.4.

Exercise 14.6.6. Discuss the transformation method given above for the case
in which (G, w) contains cycles of negative length. What will go wrong then?

Now consider a network (G, w) on a digraph G which does not contain di-
rected cycles of negative length. Then the problem of determining a shortest
directed path from s to t can be transformed to the problem of determin-
ing a perfect matching of minimal weight in a bipartite graph – that is, to
the assignment problem; see [HoMa64] and also [AhMO93, Chapter 12.7]. As
we have already seen two efficient algorithms for determining shortest paths
for this case in Chapter 3, we will not present this transformation here. In
practice, the reverse approach is more common: the assignment problem is
often solved using the SP-problem (without negative weights) as an auxiliary
procedure.



428 14 Weighted matchings

t

b′′

b′

bgbe
cgae

c′′

c′

a′′

a′

s

−2

−2
−1

−1 2

2

0 0

3/2

3/2
0

3/2

3/2

0
2

2

0

2

2

3

3
1 1

−3

−3

Fig. 14.12. A corresponding perfect matching in H

We conclude this section with one more application of matching theory to
a problem concerning shortest paths, which is taken from [Gro85]. Consider a
network N = (G, w) on a graph G, where w is a nonnegative weight function.
Let us call a path P in G odd if P contains an odd number of edges, so that
P has odd length in the graph theoretical sense; even paths contain an even
number of vertices.

We want to find a shortest odd path between two given vertices s and t.
This problem can be reduced to determining a perfect matching of minimal
weight in a suitable auxiliary graph G′, which again results from G by splitting
vertices: each vertex v �= s, t of G is replaced by two vertices v′ and v′′, and
an edge v′v′′ of weight w(v′v′′) = 0 is added to E. Moreover, each edge of
G of the form sv or tv is replaced by the edge sv′ or tv′, respectively; and
each edge uv with u, v �= s, t is replaced by two edges u′v′ and u′′v′′. Using



14.6 Matchings and shortest paths 429

similar arguments as for the proofs of Lemmas 14.6.1 and 14.6.2, one obtains
the following result; the details will be left to the reader as an exercise.

Theorem 14.6.7. Let N = (G, w) be a network on a graph G, where w is a
nonnegative weight function. Moreover, let s and t be two vertices of G, and
let G′ be the auxiliary graph described above. Then the odd {s, t}-paths P in
G correspond bijectively to the perfect matchings M in G′, and the length of
P is equal to the weight of the matching M corresponding to P under this
bijection. In particular, the shortest odd {s, t}-paths correspond bijectively to
the perfect matchings of minimal weight in G′. ��
Example 14.6.8. Let (G, w) be the network shown in Figure 14.13, where all
edges e ∈ E have weight w(e) = 1. Then the bold edges form an {s, t}-path

P : s u v t

of length 3, which corresponds to the perfect matching

K = {su′, u′′v′′, v′t, a′a′′, b′b′′, c′c′′}

in the auxiliary graph G′; see Figure 14.14.

b c

s t

u v

a

Fig. 14.13. A path of odd length in G

Exercise 14.6.9. Find a transformation similar to the one used in Theorem
14.6.7 which allows to find a shortest even {s, t}-path in (G, w) and apply this
transformation to Example 14.6.8.



430 14 Weighted matchings

b′ c′

b′′ c′′

s t

u′

v′

a′

u′′ v′′

a′′

Fig. 14.14. The corresponding perfect matching in G′

14.7 Some further problems

In this final section of the chapter, we briefly mention some further problems
concerning matchings, beginning with problems with side constraints. Such
problems occur in practice, for example, when planning the schedules for
bus drivers, when designing school time tables, or even when analyzing bio-
medical pictures; see [Bal85], [EvIS76], and [ItRo78]. We restrict our attention
to rather simple – or at least seemingly simple – types of side constraints.

Problem 14.7.1 (restricted perfect matching, RPM). Let G = (V, E)
be a graph, and let E1, . . . , Ek be subsets of E and b1, . . . , bk be positive
integers. Does there exist a perfect matching M of G satisfying the conditions

|M ∩ Ei| ≤ bi for i = 1, . . . , k? (14.10)

If we want to fix the number k of constraints, we use the notation RPMk.

Exercise 14.7.2. Show that RPM1 can be solved with complexity O(|V |3)
[ItRo78]. Hint: Reduce the problem to the determination of an optimal match-
ing for the complete graph H on V with respect to a suitable weight function.


