Schnjver application 1.7 G=(V,E) S: E-> Rf SEI E> strength of e Reliability of a path P, r(P) = min 3 ser (C G E(P)) $\Gamma_{G}(u,v) = \max \{r(P) \mid P \in u,v\} - path \}$ let Tbe a maximum weisht spanning tree of G wit the weight-function S. <u>Claim</u> $\Gamma_{T}(u,v) = \Gamma_{G}(u,v)$ $\forall u,v \in VGI$ Proot: Suppon r_(u,u) < r_6(u,u) for some pair u,veV Let Pbe the unique (u,v)-path in T and Cet Q be a max-strength path from ce tou Denote P by u=u,u,...ur sti V and let Xi, i=1,2--r, denote the connected component of T-uiuit Then the edge Uiuiti is the only edge from Xi to V-Xi As r(Q) >r(P) there exists an index i e 31,2...r) and an edge e of Q s.t r(e) >r(u;u;ti) Let T= T-uiuitite and observe that $r(T') = r(T) - r(u_{i}u_{i}u_{i}) + r(e) > r(T)$ 2

Exercise Y = schnjur 3.2(i) Every resolar bipartite graph has a perfect matching Proof 1 (via integrality then for flows) Given $G = [V_i E]$ k-resolar bipartite we make the corresponding flow network N_G : $G = \begin{bmatrix} V_i E \end{bmatrix}$ k-resolar bipartite we make the correspondences flow network N_G : u = l $G = \begin{bmatrix} V_i E \end{bmatrix}$ k-resolar bipartite we make the correspondences $V_i E \end{bmatrix}$ k-resolar bipartite we make the correspondences flow network N_G : u = l K = KK = K

 $h \cdot |X| = h \cdot |Y| = 0$ |X| = |Y|

In NG way vertex in X has out-degree & and every vertex is Y Mas in-degree & so we obtain a maximum (set)-flow of value 1X(=1Y) as follows *=1 *=1 By the integraphy theorem 1 NG has a maximum integervalued flow X and now M*= hur [uex, veY and Xur=1] is a metalung of size 1X1=1Y(

Proof 2 via Hall's theorem: Soppon J X'SX S.t [N(X')] < 1X' ((S)) then, using the all k |X'| edges incident to X' go to N(X') we have at least k |X'| edges into N(X'). By (S) and the pigeon hole privaiph, some vertixin N(X') has degree > k 3

Exercises: Give an example of a graph & with
$$\mathcal{V}(S) < 3[8]$$

Accell $\mathcal{V}(S) = size of minimum metaluns
 $\mathcal{T}(S) = size of minimum vertex cover
Old updus have $\mathcal{T} = \mathcal{V} + [:$
Let \mathcal{M} be a matching of size $\mathcal{V}(S)$:
 $\mathcal{V} = \mathcal{V}$
Let \mathcal{M} be a matching of size $\mathcal{V}(S)$:
 $\mathcal{V} = \mathcal{V}$
 $\mathcal{V} = \mathcal{V}$
 $\mathcal{V} = \mathcal{V}$
 $\mathcal{V} = \mathcal{V}$
Scame argoment works if \mathcal{M} is a maximal matching
 $\mathcal{V} = \mathcal{V}$
Scame argoment works if \mathcal{M} is a maximal matching
 $\mathcal{V} = \mathcal{V}$
Scame argoment works if \mathcal{M} is a maximal matching
 $\mathcal{V} = \mathcal{V}$
 $\mathcal{V}$$$

.

Exercin 7 Prove: G has a strongly connected orientation 2-edge connected proot: Il X X if us is the unique edge between X and X then every orientation of G is non strong as we must o nimt uv as either u-svorv-su. Il: Assume Gis 2-edge connected Then Ghas a cycli C (a) Gis not a forest) C digraph orient Casa directed upt If V(c) = V(G) we are done So assume $V(G)-V(C) \neq \phi$ As Gis connected then is some edge ×y with x eV(C) and y & VGI-V(c). As G is 2-edge-connected then is a path P from y to V(c) in G-xy. Now oright as follows: Chevily the part which is original so far is strong. Continue this way outil we have all vertices included in the alverdypnimtel a) strong strong degraph Edgesot 6 not on Cor one of the Pi's cambroninted arbitrarily

Exercise
$$8 = \text{schrijver 4.1}$$

let D be a disrupt and $s_i \in_{i_1} \in_{i_2} \cdots \in_{i_k}$ vertices of D
(not recessarily distinct). Then then an arc disjoint
paths $P_{i_1}P_{i_2} \cdots P_{i_k}$ in D s.t $P_i = \text{schrijver}_i$ if and only of
(8) $d^{+}(U) \geq \frac{1}{i_1} + \frac{1}{i_k} + \frac{1}{i_k}$ for every $U \leq V$ with sell
Proof: clearly (8) holds if then an paths $P_{i_1}P_{i_2} \cdots P_k$
as above since P_i next un at least one are out of U
if $t_i \in U$
 U
 t_2 $P_{i_2} = t_4$
 t_4 $t_5 = t_4$
 $t_5 = t_6$
Support (8) holds and make D^{+} from D
 $b_5 = dding t and one arc from each t_i to t :
Now (D]: $d^{+}(X) \geq k$ for all $X \subset V(D)$
 $t_5 = t_6$
 U
 U
 $t_6 = t_6$
 U
 $t_6 = t_6$
 U
 $t_7 = t_6$
 U
 $t_7 = t_6$
 $t_7 = t_6$
 $t_7 = t_6$
 $t_7 = t_6$
 $t_8 = t_6$
 $t$$

Exercin 10 8×8 chess board & dominos Whethis [], []
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
(a) We can cover the chessboard by 1×2 domins:
Cover odd www by Laten La In
way wars by III II II II
(b) a some we delete cells (1,1) and (8,8). Show that now we can not cover the remaining cells by 1×2 and 2×1 domin.
a line his scare with vertix set is, a
V= verbus that are is in G if uGV, and VEV, and then are let us be an edge in G if uGV, and VEV, and then are
let un be an edge in G it UGV, and to I
Mich Sourd By Che Chasses
Then each domino G> edge (1) G has a perfect matching
So I cover by dominion 21 But G has no perfect matching as $[V_2] = V_1 + 2$ But G has no perfect matching as $[V_2] = V_1 + 2$
O I C I O CTUT MC(CUUT)
But 6 has no perfect and (8,8) which are both which) (we deleted (1,1) and (8,8) which are both which)