Solution of relected exercises on Noter let G=(V,E) be a graph. Then for every choice of X, Y S V we have $(| d(X) + d(Y) \ge d(X \cap Y) + d(X \cup Y)$ $(2) d(X) + d(Y) \geq d(X - Y) + d(Y - X)$ Proof: just check the contribution of each edge to the two sides : t l d(X) + d(Y) = (a + c + d + f) + (b + c + e + f)= (c+d+e) + (a+b+c) + dc= $d(X_nY) + d(X_0Y) + 2d(X_rY)$ $\geq d(X \wedge Y) + d(X \cup Y)$ d(X) + d(Y) = (a + c + d + f) + (b + c + e + f)= (ate+f)+ (b+d+f) + 2c

= d(X-Y) + d(Y-X) + 2d(XnY, V-(XvY))= d(X-Y) + d(Y-X)

Let
$$G=(V_1E)$$
 be k -edge-connected $(\lambda(G) \geq k)$
Prove that if $d(X) = k$ for some XCV
then $\lambda(G[X]) \geq \lceil \frac{k}{2} \rceil$ when $G[X]$ is the
Subscraph induced by X.
Proof: consider a partitum $X = X_1 \circ X_2$
Then we have
 $a + b = d(X) = k$
 $b + c \geq \lambda(G) = k$
 k
 $k = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + k - k = k$
 $f = (a + c) + (b + c) - (a + b) \geq k + b = k + b = k$
 $f = (a + c) + (b + c) + (a + b) \geq k + b = k + b = k$
 $f = (a + c) + (b + c) + (a + b) \geq k + b = k + b = k$
 $f = (a + c) + (b + c) + (a + b) \geq (a + b) = k + b = k + b = k + b = k$
 $f = (a + c) + (b + c) + (a + b) \geq (a + b) = k + b = k +$

G=(V,E) is minimally k-edge connected if

$$\lambda(G) = k$$
 but $\lambda(G-e) = k-(Ve \in E)$
Problem: Given $G = (ViE)$ with $\lambda(G) = k$
Find $H = (ViE)$ s.t. H is minimally
 $k \cdot edge - connected$
Subproblem: Given a graph $G = (ViE)$ with $\lambda(G) = k$
 $and a edge uveE. Decide if$
 $n(G-uv) = k$
Subbon: vernoving $uv con only loww blu
 $edge - connected$ via
 $flows: Find max flow$
from u to v in
 N_G when G so ve .
 M_G when G so ve .
 h_G when h_G so ve .
 h_G so h_G when h_G so h_G s$

Inivial solution:
• Order E an e_ie₂ - em
• start with E'=E
• For i ∈ 1 to m
If H'= (V, E'-ei) is k-edse-connected
E'∈ E'-ei
By the remark on checking
$$\lambda(u,v)$$

this takes $O(km)$ for each i
(more precisity $O(k|E'|)$)
So $O(km^2)$ in total
Better solution
Given G first find a small
certificate Ĝ with $\lambda(\hat{G}) = \lambda(G) = k$
via max-back or derings
 $\hat{G} = vnion of k first max back forests$
of G.

Then m= |E(G)| ≤ k(n-1) = O(kn)
Now von the previous alsonthin
on G¹ instead of G.
This takes time O(km²)
as m = O(kn) we get total winning
time O(k³n²).
Problem Show that if a graph G=(V,E)
is minimally k-edge-connected, then
I ve V with d(v) = k.
Proof 1: Via sobmodularity
let X C V have d(X) = k and IXI minimum
among such ats. If IXI=I we and low so assume IXI22
Then
$$\lambda(GX) \geq [\frac{k}{2}] \geq [$$
 as we have seen
particularity

Proof 2: via max-back ordenhss)(6) via n-2 Consider the algorithm of far fonding Maxback ordenss. This results in $\lambda(6) = k =$ degree of the last vertex une in one of the max-back orderings as $\lambda(6) = k$ we have $d(\sigma_n) \geq k$ in 6 So, since we keep alledses when identifying the two last vertices when would of, we see that Unit has desree precisely k in G. Now consider Wurning A again starbug the max-back ordenings from Jurin each step. This will again find a new verter Unit #Uni with $d_{G}(\sigma_{n\alpha}) = h = d_{G}(\sigma_{n\alpha})$ So we have proved that every minimally k-edge-connected graph 6 has at least 2 vertions of Jegree k.

Problem Giving free
$$T = (V_1 E)$$

Find minimum cardinality bet of edges F
Such that $G = (V_1 E \cup F)$ is 2-edge-connected
Solution Each leaf nuels an edge
from F so $[F| \ge [\frac{H}{2}]]$
We prove that then is a solution
with precively $[\frac{H}{2}]$ edges

Now run a depth - first - rearch starting in an arbitrary leaf and labelling the leaves in the order they are visited: add the edge, i - it for i=1,2,...6 when #leaver=2t 6 We claim that the results sraph 6 is 2-edge connected.)-edse-cot Ehen Suppon Gha, a No red edge 0 V-X

Withoot loss of generality
leaf 1 is in X
Then, by the definition
of DFS, the is a number

$$p < 2t$$
 such that
 $o (eaves 1,2,...,p are in X)$
 $e (eaves pt1,...,s are in X) - X$
 $e (eaves pt1,...,s tore in X) as a in
 $Can 1 : p \ge 6$
Then each of the leaves $pt1,...,s$ have e and else
to X contradiction
 $Can 2 : p < 6$ and $s \le 6$
Then the leaf s has a red edge to
 $s t t \in X$ contradiction
 $Can 3 p < 6 < 5$:
Then the edge $1 - 6t1$ goes from
 $X to V - X$, contradiction$

Problem

let G = (V,E) have $\lambda(G) = k$ and let Elbe a minimal (cortinchesion) set of edges s.t. G'= (V, EUE') has $\lambda(G') = k+1$ Show that there are no cyclis in E (so El induus a forest) Prost: Joppose C is a cycle and consider a partition (X, V-X) of V. Then we either have \times V- \times V- \times

× V-X $\vee - \times$

· In the first can C has no edse between X and V-X so we can delite any (all) edses of C without chansing d(X) which must a linady be at least ket e In the second can C has at least 2 edses between X and V-X and using that d G(X)≥k we re that we can de lete an arbitrary edge of C without creabus a cut of size k Both can, show that E' is not minimal ?

Problem show that every minimally k-edse-connected
graph has at most
$$k(n-1)$$
 edses.
Proof
let $G=(V,E)$ be minimally k-edse-connected and let
 $H=(V,E^1)$ be the union of the first k max-back
forests of G with vespect to some max-back ordering
 $v_{i}, v_{2}, \dots, v_{n}$ of G.
Then $|E'| \leq k(n-1)$ and $E' \leq E$
As G is minimally k-edse-connected, we have $E=E'$
So $|E| \leq k(n-1)$ D.