
12 Introduction to LP-Duality 

A large fraction of the theory of approximation algorithms, as we know it to
day, is built around linear programming (LP). In Section 12.1 we will review 
some key concepts from this theory. In Section 12.2 we will show how the 
LP-duality theorem gives rise to min-max relations which have far-reaching 
algorithmic significance. Finally, in Section 12.3 we introduce the two funda
mental algorithm design techniques of rounding and the primal-dual schema, 
as well as the method of dual fitting, which yield all the algorithms of Part 
II of this book. 

12.1 The LP-duality theorem 

Linear programming is the problem of optimizing (i.e., minimizing or maxi
mizing) a linear function subject to linear inequality constraints. The function 
being optimized is called the objective function. Perhaps the most interesting 
fact about this problem from our perspective is that it is well-characterized 
(see definition in Section 1.2). Let us illustrate this through a simple example. 

minimize 

subject to x2 + 3x3 > 10 

X3 > 6 

Notice that in this example all constraints are of the kind "~" and all 
variables are constrained to be nonnegative. This is the standard form of a 
minimization linear program; a simple transformation enables one to write 
any minimization linear program in this manner. The reason for choosing 
this form will become clear shortly. 

Any solution, i.e., a setting for the variables in this linear program, that 
satisfies all the constraints is said to be a feasible solution. Let z* denote the 
optimum value of this linear program. Let us consider the question, "Is z* at 
most a?" where a is a given rational number. For instance, let us ask whether 
z* :-::; 30. A Yes certificate for this question is simply a feasible solution whose 
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objective function value is at most 30. For example, x = (2, 1, 3) constitutes 
such a certificate since it satisfies the two constraints of the problem, and the 
objective function value for this solution is 7 · 2 + 1 + 5 · 3 = 30. Thus, any 
Yes certificate to this question provides an upper bound on z*. 

How do we provide a No certificate for such a question? In other words, 
how do we place a good lower bound on z*? In our example, one such bound 
is given by the first constraint: since the xi's are restricted to be nonnegative, 
term-by-term comparison of coefficients shows that 7x1 + x 2 + 5x3 2: x1 -

x2 + 3xa. Since the right-hand side of the first constraint is 10, the objective 
function is at least 10 for any feasible solution. A better lower bound can be 
obtained by taking the sum of the two constraints: for any feasible solution 
x, 

The idea behind this process of placing a lower bound is that we are finding 
suitable nonnegative multipliers for the constraints so that when we take their 
sum, the coefficient of each Xi in the sum is dominated by the coefficient in 
the objective function. Now, the right-hand side of this sum is a lower bound 
on z* since any feasible solution has a nonnegative setting for each Xi· Notice 
the importance of ensuring that the multipliers are nonnegative: they do not 
reverse the direction of the constraint inequality. 

Clearly, the rest of the game lies in choosing the multipliers in such a 
way that the right-hand side of the sum is as large as possible. Interestingly 
enough, the problem of finding the best such lower bound can be formulated 
as a linear program: 

maximize lOyl + 6y2 

subject to Y1 + 5y2 < 7 

-yl + 2y2 < 1 

3yl Y2 < 5 

YI. Y2 2: 0 

Here y1 and Y2 were chosen to be the nonnegative multipliers for the first 
and the second constraint, respectively. Let us call the first linear program 
the primal program and the second the dual program. There is a systematic 
way of obtaining the dual of any linear program; one is a minimization prob
lem and the other is a maximization problem. Further, the dual of the dual 
is the primal program itself (Exercise 12.1). By construction, every feasible 
solution to the dual program gives a lower bound on the optimum value of 
the primal. Observe that the reverse also holds. Every feasible solution to 
the primal program gives an upper bound on the optimal value of the dual. 
Therefore, if we can find feasible solutions for the dual and the primal with 
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matching objective function values, then both solutions must be optimal. In 
our example, x = (7 /4, 0, 11/4) and y = (2, 1) both achieve objective func!
tion values of 26, and thus both are optimal solutions (see figure below). 
The reader may wonder whether our example was ingeniously constructed to 
make this happen. Surprisingly enough, this is not an exception, but the rule! 
This is the central theorem of linear programming: the LP-duality theorem. 

dual opt = primal opt 

0 26 00 

I. 
dual solutions 

.I. : 
primal solutions 

In order to state this theorem formally, let us consider the following min
imization problem, written in standard form, as the primal program; equiv
alently, we could have started with a maximization problem as the primal 
program. 

n 

minimize 2:::>jxj (12.1) 
j=l 

n 

subject to L aijXj ~ bi, i = 1, ... , m 

j=l 
Xj ~ 0, j = 1, ... , n 

where aij, bi, and Cj are given rational numbers. 

Introducing variables Yi for the ith inequality, we get the dual program: 

m 

maximize (12.2) 

m 

subject to LaijYi::; Cj, j = 1, ... ,n 
i=l 
Yi ~ 0, i = 1, ... ,m 

Theorem 12.1 (LP-duality theorem) The primal program has finite 
optimum iff its dual has finite optimum. Moreover, if x* = (xi, ... , x~) and 
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y* (yi, ... , y;,..) are optimal solutions for the primal and dual programs, 
respectively, then 

n m 

l::cjxj = Lbiy;. 
j=l i=l 

Notice that the LP-duality theorem is really a min-max relation, since 
one program is a minimization problem and the other is a maximization 
problem. A corollary of this theorem is that the linear programming problem 
is well-characterized. Feasible solutions to the primal (dual) provide Yes (No) 
certificates to the question, "Is the optimum value less than or equal to a?" 
Thus, as a corollary of this theorem we get that linear programming is in 
NP n co-NP. 

Going back to our example, by construction, any feasible solution to the 
dual program gives a lower bound on the optimal value of the primal. In 
fact, it also gives a lower bound on the objective function value achieved by 
any feasible solution to the primal. This is the easy half of the LP-duality 
theorem, sometimes called the weak duality theorem. We give a formal proof 
of this theorem, since some steps in the proof will lead to the next important 
fact. The design of several exact algorithms have their basis in the LP-duality 
theorem. In contrast, in approximation algorithms, typically the weak duality 
theorem suffices. 

Theorem 12.2 (Weak duality theorem) If x = (x1, ... , xn) and y = 
(Yl, ... , Ym) are feasible solutions for the primal and dual program, respec
tively, then 

n m 

L CjXj 2 L biYi· (12.3) 
j=l i=l 

Proof: Since y is dual feasible and Xj 's are nonnegative, 

(12.4) 

Similarly, since x is primal feasible and Yi 's are nonnegative, 

(12.5) 

The theorem follows by observing that 
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D 

By the LP-duality theorem, x and y are both optimal solutions iff (12.3) 
holds with equality. Clearly, this happens iff both (12.4) and (12.5) hold with 
equality. Hence, we get the following result about the structure of optimal 
solutions: 

Theorem 12.3 (Complementary slackness conditions) Let x andy 
be primal and dual feasible solutions, respectively. Then, x and y are both 
optimal iff all of the following conditions are satisfied: 

Primal complementary slackness conditions 
For each 1::; j::; n: either Xj = 0 or L::':1 a;jYi = cj; and 

Dual complementary slackness conditions 
For each 1::; i::; m: either y; = 0 or L:7=l a;jXj = b;. 

The complementary slackness conditions play a vital role in the design 
of efficient algorithms, both exact and approximation; see Chapter 15 for 
details. (For a better appreciation of their importance, we recommend that 
the reader study algorithms for the weighted matching problem, see Section 
12.5.) 

12.2 Min-max relations and LP-duality 

In order to appreciate the role of LP-duality theory in approximation algo
rithms, it is important to first understand its role in exact algorithms. To 
do so, we will review some of these ideas in the context of the max-flow 
min-cut theorem. In particular, we will show how this and other min-max 
relations follow from the LP-duality theorem. Some of the ideas on cuts and 
flows developed here will also be used in the study of multicommodity flow 
in Chapters 18, 20, and 21. 

The problem of computing a maximum flow in a network is: given a 
directed1 graph, G = (V, E) with two distinguished nodes, sources and sink 
t, and positive arc capacities, c : E -+ R +, find the maximum amount of flow 
that can be sent from s tot subject to 

1. capacity constraint: for each arc e, the flow sent through e is bounded by 
its capacity, and 

1 The maximum flow problem in undirected graphs reduces to that in directed 
graphs: replace each edge ( u, v) by two directed edges, ( u -+ v) and ( v -+ u), 
each of the same capacity as ( u, v). 
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2. flow conservation: at each node v, other than s and t, the total flow into 
v should equal the total flow out of v. 

An s-t cut is defined by a partition of the nodes into two sets X and X 
so that s E X and t E X, and consists of the set of arcs going from X to X. 
The capacity of this cut, c(X, X), is defined to be the sum of capacities of 
these arcs. Because of the capacity constraints on flow, the capacity of any 
s-t cut is an upper bound on any feasible flow. Thus, if the capacity of an 
s-t cut, say (X, X), equals the value of a feasible flow, then (X, X) must be a 
minimum s-t cut and the flow must be a maximum flow in G. The max-flow 
min-cut theorem proves that it is always possible to find a flow and an s-t 
cut so that equality holds. 

Let us formulate the maximum flow problem as a linear program. First, 
introduce a fictitious arc of infinite capacity from t to s, thus converting the 
flow to a circulation; the objective now is to maximize the flow on this arc, 
denoted by fts· The advantage of making this modification is that we can 
now require flow conservation at s and t as well. If fiJ denotes the amount of 
flow sent through arc (i,j) E E, we can formulate the maximum flow problem 
as follows: 

maximize fts 

subject to fiJ :::; Cij, 

2:: 1ji 
j: (j,i)EE 

fij 2: 0, 

2:: 1ij:::: o, 
j: (i,j)EE 

(i,j) E E 

i E V 

(i,j) E E 

The second set of inequalities say that for each node i, the total flow into i 
is at most the total flow out of i. Notice that if this inequality holds at each 
node, then in fact it must be satisfied with equality at each node, thereby 
implying flow conservation at each node (this is so because a deficit in flow 
balance at one node implies a surplus at some other node). With this trick, 
we get a linear program in standard form. 

To obtain the dual program we introduce variables dij and Pi correspond
ing to the two types of inequalities in the primal. We will view these variables 
as distance labels on arcs and potentials on nodes, respectively. The dual pro
gram is: 

minimize L Cijdij 

(i,j)EE 

subject to dij -Pi + PJ 2: 0, 

Ps- Pt 2: 1 

dij 2: 0, 

(12.6) 

(i,j) E E 

(i,j) E E 
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Pi 2: 0, i E V (12.7) 

For developing an intuitive understanding of the dual program, it will be 
best to first transform it into an integer program that seeks 0/1 solutions to 

the variables: 

minimize L Cijdij 
{i,j)EE 

subject to dij -Pi + P1 2: 0, 

Ps- Pt 2: 1 

dijE{0,1}, 

PiE {0, 1}, 

(i,j) E E 

(i,j) E E 

i E V 

Let ( d*, p*) be an optimal solution to this integer program. The only way 

to satisfy the inequality p; - p; 2: 1 with a 0/1 substitution is to set p; = 1 

and p; = 0. This solution naturally defines an s-t cut (X, X), where X is the 
set of potential 1 nodes, and X the set of potential 0 nodes. Consider an arc 

(i,j) with i EX and j EX. Since PT = 1 and pj = 0, by the first constraint, 

d71 2: 1. But since we have a 0/1 solution, d71 = 1. The distance label for 
each of the remaining arcs can be set to either 0 or 1 without violating the 

first constraint; however, in order to minimize the objective function value, 
it must be set to 0. The objective function value must thus be equal to the 

capacity of the cut (X, X), and (X, X) must be a minimum s-t cut. 

Thus, the previous integer program is a formulation of the minimum s-t 
cut problem! What about the dual program? The dual program can be viewed 

as a relaxation of the integer program where the integrality constraint on the 
variables is dropped. This leads to the constraints 1 2: dij 2: 0 for ( i, j) E E 
and 1 2: Pi 2: 0 for i E V. Next, we notice that the upper bound constraints 
on the variables are redundant; their omission cannot give a better solution. 
Dropping these constraints gives the dual program in the form given above. 

We will say that this program is the LP-relaxation of the integer program. 
Consider an s-t cut C. Set C has the property that any path from s tot 

in G contains at least one edge of C. Using this observation, we can interpret 
any feasible solution to the dual program as a fractional s-t cut: the distance 

labels it assigns to arcs satisfy the property that on any path from s to t 
the distance labels add up to at least 1. To see this, consider an s-t path 

(s = v0 , v1, ... , Vk = t). Now, the sum of the potential differences on the 

endpoints of arcs on this path is 

k-1 

L (Pi - Pi+l) = Ps - Pt· 
i=O 
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By the first constraint, the sum of the distance labels on the arcs must add 
up to at least Ps-Pt, which is ~ 1. Let us define the capacity ofthis fractional 
s-t cut to be the dual objective function value achieved by it. 

In principle, the best fractional s-t cut could have lower capacity than 
the best integral cut. Surprisingly enough, this does not happen. Consider 
the polyhedron defining the set of feasible solutions to the dual program. 
Let us call a feasible solution an extreme point solution if it is a vertex of 
this polyhedron, i.e., it cannot be expressed as a convex combination of two 
feasible solutions. From linear programming theory we know that for any 
objective function, i.e., assignment of capacities to the arcs of G, there is an 
extreme point solution that is optimal (for this discussion let us assume that 
for the given objective function, an optimal solution exists). Now, it can be 
proven that each extreme point solution of the polyhedron is integral, with 
each coordinate being 0 or 1 (see Exercise 12.7). Thus, the dual program 
always has an integral optimal solution. 

By the LP-duality theorem maximum flow in G must equal capacity of 
a minimum fractional s-t cut. But since the latter equals the capacity of a 
minimum s-t cut, we get the max-flow min-cut theorem. 

The max-flow min-cut theorem is therefore a special case of the LP-duality 
theorem; it holds because the dual polyhedron has integral vertices. In fact, 
most min-max relations in combinatorial optimization hold for a similar rea
son. 

Finally, let us illustrate the usefulness of complementary slackness condi
tions by utilizing them to derive additional properties of optimal solutions to 
the flow and cut programs. Let j* be an optimum solution to the primal LP 
(i.e., a maximum s-t flow). Also, let (d* ,p*) be an integral optimum solution 
to the dual LP, and let (X,X) be the cut defined by (d*,p*). Consider an 
arc ( i, j) such that i E X and j E X. We have proven above that dtj = 1. 
Since dtj =f. 0, by the dual complementary slackness condition, ftj = C;,j. 
Next, consider an arc (k, l) such that k EX and lEX. Since pj.- Pi = -1, 
and dj.1 E {0, 1 }, the constraint dj.1 - pj. +Pi ~ 0 must be satisfied as a strict 
inequality. By the primal complementary slackness condition, fi:1 = 0. Thus, 
we have proven that arcs going from X to X are saturated by j* and the 
reverse arcs carry no flow. (Observe that it was not essential to invoke com
plementary slackness conditions to prove these facts; they also follow from 
the fact that flow across cut (X, X) equals its capacity.) 

12.3 Two fundamental algorithm design techniques 

We can now explain why linear programming is so useful in approximation al
gorithms. Many combinatorial optimization problems can be stated as integer 
programs. Once this is done, the linear relaxation of this program provides 
a natural way of lower bounding the cost of the optimal solution. As stated 
in Chapter 1, this is typically a key step in the design of an approximation 
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algorithm. As in the case of the minimum s-t cut problem, a feasible solution 
to the LP-relaxation can be thought of as a fractional solution to the original 
problem. However, in the case of an NP-hard problem, we cannot expect 
the polyhedron defining the set of feasible solutions to have integer vertices. 
Thus, our task is not to look for an optimal solution to the LP-relaxation, 
but rather a near-optimal integral solution. 

There are two basic techniques for obtaining approximation algorithms 
using linear programming. The first, and more obvious, method is to solve 
the linear program and then convert the fractional solution obtained into 
an integral solution, trying to ensure that in the process the cost does not 
increase much. The approximation guarantee is established by comparing 
the cost of the integral and fractional solutions. This technique is called LP
rounding or simply rounding. 

The second, less obvious and perhaps more sophisticated, method is to use 
the dual of the LP-relaxation in the design of the algorithm. This technique 
is called the primal-dual schema. Let us call the LP-relaxation the primal 
program. Under this schema, an integral solution to the primal program and 
a feasible solution to the dual program are constructed iteratively. Notice 
that any feasible solution to the dual also provides a lower bound on OPT. 
The approximation guarantee is established by comparing the two solutions. 

Both these techniques have been used extensively to obtain algorithms for 
many fundamental problems. Fortunately, once again, these techniques can 
be illustrated in the simple setting of the set cover problem. This is done in 
Chapters 14 and 15. Later chapters will present ever more sophisticated use 
of these techniques for solving a variety of problems. 

LP-duality theory has also been useful in analyzing combinatorially ob
tained approximation algorithms, using the method of dual fitting. In Chapter 
13 we will give an alternative analysis of the greedy set cover algorithm, Al
gorithm 2.2, using this method. This method has also been used to analyze 
greedy algorithms for the metric uncapacitated facility location problem (see 
Exercise 24.12). The method seems quite basic and should find other appli
cations as well. 

12.3.1 A comparison of the techniques and the notion of 
integrality gap 

The reader may suspect that from the viewpoint of approximation guarantee, 
the primal-dual schema is inferior to rounding, since an optimal solution to 
the primal gives a tighter lower bound than a feasible solution to the dual. It 
turns out that this is not so. In order to give a formal explanation, we need 
to introduce the crucial notion of integrality gap of an LP-relaxation. 

Given an LP-relaxation for a minimization problem II, let OPT1 (I) de
note the cost of an optimal fractional solution to instance I, i.e., the objective 
function value of an optimal solution to the LP-relaxation. Define the inte-
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grality gap, sometimes also called the integrality ratio, of the relaxation to 
be 

OPT(!) 
s~p OPTJ(I)' 

i.e., the supremum of the ratio of the optimal integral and fractional solutions. 
In the case of a maximization problem, the integrality gap will be defined to be 
the infimum of this ratio. As stated in Section 12.2, most min-max relations 
arise from LP-relaxations that always have integral optimal solutions. Clearly, 
the integrality gap of such an LP is 1. We will call such an LP-relaxation an 
exact relaxation. 

If the cost of the solution found by the algorithm is compared directly 
with the cost of an optimal fractional solution (or a feasible dual solution), 
as is done in most algorithms, the best approximation factor we can hope to 
prove is the integrality gap of the relaxation (see Exercise 12.5). Interestingly 
enough, for many problems, both techniques have been successful in yielding 
algorithms having guarantees essentially equal to the integrality gap of the 
relaxation. 

The main difference in performance between the two techniques lies in the 
running times of the algorithms produced. An LP-rounding algorithm needs 
to find an optimal solution to the linear programming relaxation. Since linear 
programming is in P, this can be done in polynomial time if the relaxation 
has polynomially many constraints. Even if the relaxation has exponentially 
many constraints, this may still be achievable, if a polynomial time separa
tion oracle can be constructed, i.e., a polynomial time algorithm that given 
a point in Rn, where n is the number of variables in the relaxation, either 
confirms that this point is a feasible solution (i.e., satisfies all constraints), or 
produces a violated constraint (see the notes in Section 12.5 for references). 
The running time for both possibilities is high; for the second it may be ex
orbitant. Let us remark that for certain problems, extreme point solutions 
have additional structural properties and some LP-rounding algorithms re
quire such a solution to the linear programming relaxation. Such solutions 
can also be found in polynomial time. 

On the other hand, the primal-dual schema leaves enough room to exploit 
the special combinatorial structure of individual problems and is thereby 
able to yield algorithms having good running times. It provides only a broad 
outline of the algorithm - the details have to be designed individually for 
specific problems. In fact, for many problems, once the algorithm has been 
designed using the primal-dual schema, the scaffolding of linear programming 
can be completely dispensed with to get a purely combinatorial algorithm. 

This brings us to another advantage of the primal-dual schema- this time 
not objectively quantifiable. A combinatorial algorithm is more malleable 
than an algorithm that requires an LP-solver. Once a basic problem is solved 
using the primal-dual schema, one can also solve variants and generalizations 
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of the basic problem. Exercises in Chapters 22 and 24 illustrate this point. 
From a practical standpoint, a combinatorial algorithm is more useful, since 
it is easier to adapt it to specific applications and fine tune its performance 
for specific types of inputs. 

12.4 Exercises 

12.1 Show that the dual of the dual of a linear program is the original 
program itself. 

12.2 Show that any minimization program can be transformed into an equiv
alent program in standard form, i.e., the form of LP (12.1). 

12.3 Change some of the constraints of the primal program (12.1) into 
equalities, i.e., so they are of the form 

n 

L:a;jXj = b;,i E J. 
j=l 

Show that the dual of this program involves modifying program (12.2) so that 
the corresponding dual variables y;, i E I are unconstrained, i.e., they are not 
constrained to be nonnegative. Additionally, if some of the variables x 1, j E J 
in program (12.1) are unconstrained, then the corresponding constraints in 
the dual become equalities. 

12.4 Consider LP's (13.2) and (13.3), the LP-relaxation and dual LP for 
the set cover problem, Problem 2.1. Let x and y be primal and dual feasi
ble solutions, respectively, and assume that they satisfy all complementary 
slackness conditions. Show that the dual pays for the primal exactly via a 
"local paying mechanism" as follows: if each element e pays YeXs to each set 
S containing e, then the amount collected by each set Sis precisely c(S)xs. 
Hence show that x andy have the same objective function values. 

12.5 Is the following a theorem: An approximation algorithm designed using 
an LP-relaxation cannot achieve a better approximation guarantee than the 
integrality gap of the relaxation. 
Hint: In principle it may be possible to show, using additional structural 
properties, that whenever an instance has a bad gap, the cost of the solution 
found by the algorithm is much less that o:OPT, where a is the integrality 
gap of the relaxation. (Observe that if the instance has a bad gap, the cost 
of the solution found cannot be much less than o:OPTt.) 

12.6 Use the max-flow min-cut theorem to derive Menger's Theorem: 
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Theorem 12.4 Let G = (V, E) be a directed graph with s, t E V. Then, the 
maximum number of edge-disjoint (vertex-disjoint) s-t paths is equal to the 
minimum number of edges (vertices) whose removal disconnects s from t. 

12.7 Show that each extreme point solution for LP (12.6) is 0/1, and hence 
represents a valid cut. 
Hint: An n x m matrix A is said to be totally unimodular if the determinant 
of every square submatrix of A is 1, -1, or 0. Show, by induction, that the 
constraint matrix of this LP is totally unimodular. Also, use the fact that 
a feasible solution for a set of linear inequalities in Rn is an extreme point 
solution iff it satisfies n linearly independent inequalities with equality. 

12.8 This exercise develops a proof of the Konig-Egervary Theorem (Theo
rem 1.6). Let G = (V, E) be a bipartite graph. 

1. Show that the following is an exact LP-relaxation (i.e., always has an 
integral optimal solution) for the maximum matching problem in G. 

maximize 

subject to 
e: e incident at v 

Xe ~ 0, 

Xe ~ 1, 

{12.8) 

v E V 

eE E 

Hint: Using the technique of Exercise 12.7 show that each extreme point 
solution for LP (12.8) is 0/1, and hence represents a valid matching. 

2. Obtain the dual of this LP and show that it is an exact LP-relaxation for 
the problem of finding a minimum vertex cover in bipartite graph G. 

3. Use the previous result to derive the Konig-Egervary Theorem. 

12.9 (Edmonds [74]) 

1. Let G = (V, E) be an undirected graph, with weights We on edges. The 
following is an exact LP-relaxation for the problem of finding a maximum 
weight matching in G. (By e : e E S we mean edges e that have both 
endpoints in S.) 

maximize L WeXe 

e 

subject to 
e: e incident at v 

Xe ~ 1, v E V 

L Xe ~ jSj2- 1' 
e: eES 

Xe ~ 0, 

S C V,ISI odd 

eE E 

{12.9) 
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Obtain the dual of this LP. If the weight function is integral, the dual is 
also exact. Observe that Theorem 1.7 follows from these facts. 

2. Assume that lVI is even. The following is an exact LP-relaxation for the 
minimum weight perfect matching problem in G (a matching is perfect 
if it matches all vertices). Obtain the dual of this LP. Use complemen
tary slackness conditions to give conditions satisfied by a pair of optimal 
primal (integral) and dual solutions for both formulations. 

minimize 

subject to L Xe = 1, 
e: e incident at v 

L Xe ~ ISI2-1' 
e: eES 

Xe 2: 0, 

(12.10) 

v E V 

s c v, lSI odd 

e E E 

12.10 (Edmonds [77]) Show that the following is an integer programming 
formulation for the minimum spanning tree (MST) problem. Assume we are 
given graph G = (V,E), lVI = n, with cost function c: E ~ Q+. For 
A ~ E, we will denote by K( A) the number of connected components in 
graph GA = (V, A). 

mm1m1ze (12.11) 

subject to L Xe = n- K(A), AcE 
eEA 

LXe = n-1 
eEE 

Xe E {0, 1}, e E E 

The rest of this exercise develops a proof that the LP-relaxation of this integer 
program is exact for the MST problem. 

1. First, it will be convenient to change the objective function ofiP (12.11) 
to max Ee -CeXe. Obtain the LP-relaxation and dual of this modified 
formulation. 

2. Consider the primal solution produced by Kruskal's algorithm. Let e1, ... , 

em be the edges sorted by increasing cost, lEI = m. This algorithm greed
ily picks a maximal acyclic subgraph from this sorted list. Obtain a suit
able dual feasible solution so that all complementary slackness conditions 
are satisfied. 
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Hint: Let At = { e1, ... , et}. Set YA, = et+l - et, for 1 :::; t < m, and 
YE =-em, where y is the dual variable. 

3. Show that x is a feasible solution to the above-stated primal program iff 
it is a feasible solution to the following LP. That is, prove that this is 
also an exact relaxation for the MST problem. 

minimize 

subject to L Xe :::; lSI - 1, 
eES 

LXe =n-1 
eEE 

Xe ~ 0, 

(12.12) 

ScV 

e E E 

12.11 In this exercise, you will derive von Neumann's minimax theorem 
in game theory from the LP-duality theorem. A finite two-person zero-sum 
game is specified by an m x n matrix A with real entries. In each round, 
the row player, R, selects a row, say i; simultaneously, the column player, 
C, selects a column, say j. The payoff toR at the end of this round is aij· 

Thus, laij I is the amount that C pays R (R pays C) if aij is positive ( aij 

is negative); no money is exchanged if aij is zero. Zero-sum game refers to 
the fact that the total amount of money possessed by R and C together is 
conserved. 

The strategy of each player is specified by a vector whose entries are non
negative and add up to one, giving the probabilities with which the player 
picks each row or column. Let R's strategy be given by m-dimensional vec
tor x, and C's strategy be given by n-dimensional vector y. Then, the ex
pected payoff to R in a round is xT Ay. The job of each player is to pick 
a strategy that guarantees maximum possible expected winnings ( equiva
lently, minimum possible expected losses), regardless of the strategy cho
sen by the other player. If R chooses strategy x, he can be sure of win
ning only miny xT Ay, where the minimum is taken over all possible strate
gies of C. Thus, the optimal choice for R is given by maxx miny xT Ay. 
Similarly, C will minimize her losses by choosing the strategy given by 
miny maxx xT Ay. The minimax theorem states that for every matrix A, 

0 TA 0 TA maxxmmyx y = mmymaxxx y. 
Let us say that a strategy is pure if it picks a single row or column, 

i.e., the vector corresponding to it consists of one 1 and the rest O's. A key 
observation is that for any strategy x of R, miny xT Ay is attained for a pure 
strategy of C: Suppose the minimum is attained for strategy y. Consider the 
pure strategy corresponding to any nonzero component of y. The fact that 
the components of y are nonnegative and add up to one leads to an easy 
proof that this pure strategy attains the same minimum. Thus, R's optimum 
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strategy is given by maxx minj 2:7:1 aijXi. The second critical observation 
is that the problem of computing R's optimal strategy can be expressed as a 
linear program: 

maximize z 

subject to 
m 

z- "'a··x· <0 ~ •J • - ' 
i=l 

m 

L:xi = 1 
i=l 

Xi;:::: 0, 

j = 1, ... ,n 

i = l, ... ,m 

Find the dual of this LP and show that it computes the optimal strategy 
for C. (Use the fact that for any strategy y of C, maxx xT Ay is attained for a 
pure strategy of R.) Hence, prove the minimax theorem using the LP-duality 
theorem. 

12.5 Notes 

For a good introduction to theory of linear programming, see Chvatal [51 J. 
There are numerous other books on the topic, e.g., Dantzig [61], Karloff [167], 
Nemhauser and Wolsey [220], and Schrijver [245]. Linear programming has 
been extensively used in combinatorial optimization, see Ahuja, Magnanti, 
and Orlin [2], Cook, Cunningham, Pulleyblank, and Schrijver [54], Grotschel, 
Lovasz, and Schrijver [123], Lovasz [201], Lovasz and Plummer [202], and Pa
padimitriou and Steiglitz [225]. For a good explanation of Edmonds' weighted 
matching algorithm, see Lovasz and Plummer [202]. For algorithms for find
ing a solution to an LP, given a separation oracle, see Grotschel, Lovasz, and 
Schrijver [122, 123] and Schrijver [245]. 


