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Stuff covered in week 6
I gave an overview of Sections 3.1-3.5 in BJG. After this and watching the videos on flows,
you should be ready to work with flows. I covered matching in bipartite graphs and showed
how to find a maximum matching via flows. I then used the max flow min cut theorem to
prove the theorems of Hall and König.

Lecture February 14, 2022:

• I will give a proof of Menger’s Theorem based on flows and well as a proof using
submodularity. See BJG 7.3.

• More on Matroids (circuits, rank function, dual matroid). PS 12.4 and SCH 10.1-10.2
and the notes below.

• Weighted bipartite matching. SCH 3.5 matching in a graph which is not bipartite.

Exercises February 17. 2022:

NB! There is a chance that this class will be replaced by a video lecture on
max-back orderings. If that happens, we will discuss the exercises in week 8.

• SCH application 1.4.

• SCH application 1.7.

• Suppose you are given a connected undirected graph G = (V,E) with costs on the
edges and your task is to give an algorithm which finds a minimum cost set of E ′ ⊂ E
edges whose removal disconnects the graph (that is G−E ′ is not connected). Explain
how to do this in polynomial time (hint: use flows).

• SCH exercise 3.2. Hint for (i): you may either consider a maximal matching, apply
Hall’s theorem or use the integrality theorem for flows (as I did at the lecture in
Week 6).

• Give an example of a graph G with ν(G) < τ(G). Argue that for every graph G we
have τ(G) ≤ 2ν(G). Suggest a polynomial algorithm for finding a vertex cover of
size at most 2τ(G) in a given graph G.
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• Prove that if a graph is 2-connected (that is, there are at least two internally disjoint
(s, t)-paths for every choice of distinct vertices s, t ∈ V (G)), then for every vertex s
and edge uv of G there is a cycle C which contains s and the edge uv.

• Show that a graph G has a strongly connected orientation (we replace each edge uv
by one of the arcs u→ v, v → u) if and only if G is 2-edge-connected. Also describe
an algorithm to find such an orientation or a bad cut.

• SCH Exercise 4.1.

• SCH application 4.1 be ready to discuss this in the class.

• Suppose you have a 8 by 8 chess board and dominos of size 1 by 2.

(a) Show that you can cover the chess board by non-overlapping dominos.

(b) Now suppose that we delete two diagonally opposite cornes of the chess board
((1, 1) and (8, 8)). Show that the new chessboard cannot be covered by non-
overlapping dominos. Hint: make a suitable bipartite graph and consider match-
ings in this.

Notes on matroids

Recall that a base of a matroid M = (S,F) is a maximal independent set of F .

Theorem 0.1 (Base axioms) The set B bases of a matroid M = (S,F) with F 6= ∅
satisfy the following axioms:

(B1) B 6= ∅

(B2) |B1| = |B2| for all B1, B2 ∈ B.

(B3) If B1, B2 ∈ B and x ∈ B1 then there exists y ∈ B2 such that B1 − x+ y ∈ B.

Proof: It is clear that the bases of M satisfy (B1) and (B2) and (B3) is a special case of
the exchange axiom (consider B1 − x and B2). �
.

The base axioms also define the set of all matroids of a set.

Proposition 0.2 Let S be a set and let B ⊆ 2S be a collection of subsets of S which
satisfies (B1)-(B3). Define FB = {X ⊆ S|∃B ∈ B : X ⊆ B}. Then MB = (S,FB) is a
matorid.
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Proof: Clearly MB is s subset system so we just need to show that the exchange axiom
holds for FB. Let X, Y ∈ FB with |Y | = |X|+1 and let BX , BY be elements of B such that
X ⊆ BX and Y ⊆ BY . Applying (B3) repeatedly we can delete the elements of BX−X one
by one while adding a new element from BY −BX each time. Since |BX−X| = |BY −Y |+1
at some point in this process we have a base B′X containing X such that the only element
of BY −B′X that we can add to B′X−w, w 6∈ X, is an element y ∈ Y −X. Now B′X−w+y
contains X + y so X + y ∈ FB, showing that Y −X contains an element y such that X + y
is independent. �

Definition 0.3 (dual matroid) Let M = (S,F) be a matroid with base set B and rank
r(S) < |S|. Define F∗ = {X|∃B ∈ B : X ∩ B = ∅}. Then M∗ = (S,F∗) is a matroid
called the dual matroid of M .

Proof: Let B∗ be the set of bases of F∗. We show that B∗ satisfies the base axioms and
then it follows from Proposition 0.2 that M∗ is a matroid. By definition of F∗, all maximal
independent subsets of S have the same size and since r(S) < |S| we have B∗ 6= ∅ so it
only remains to prove that (B3) holds. Let B∗1 , B

∗
2 ∈ B∗ and let x ∈ B∗1 −B∗2 be arbitrary.

Note that (S − B∗1) ∩ (S − B∗2) + x is a subset of S − B∗2 and hence is independent in
F . Apply the exchange axiom (in M) to the independent sets (S − B∗1) ∩ (S − B∗2) + x
and S − B∗1 until we have a new base Z of M . This will satisfy Z = (S − B∗1) + x − z
where z ∈ (S − B∗1) ∩ B∗2 ⊂ B∗2 so we have shown that we can find z ∈ B∗2 such that
B∗1 − x+ z ∈ B∗. �

Finding a negative cycle in a digraph

Theorem 0.4 Let D = (V,A) be a digraph with a special vertex s and let w : A → R
be a weightfunction. Let Dπ be the successor digraph that we maintain while running the
Bellmann-Ford algorithm. Then Dπ will contain a cycle no later than iteration n of the
algorithm if and only if D contains a negative cycle reachable from s.

Proof: If D has a negative cycle C reachable from s, then it can be seen that Dπ will
contain a cycle no later than iteration k where k is the number of arcs on a shortest path
from s to C plus the number of arcs in C. This is not a complete argument so you should
try to make it more precise.

We prove the other direction below. Assume Dπ is acyclic until iteration i and that a cycle
C appears in iteration i. Consider the moment C appears and let C = v1v2 . . . vkv1 where
we have just added vkv1 to A(Dπ).

Note that at any time during the algorithm (and no matter whether D has a negative cycle
or not) we always have d(y) ≥ d(x) + w(x, y) for every arc xy ∈ A(Dπ). This is because
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d(x) may have changed again but d(y) has not.

Using that the arc vkv1 was just added we obtain

d(v1) ≥ d(vk) + w(vk, v1)

≥ d(vk−1) + w(vk−1, vk) + w(vk, v1)

. . .

≥ d(v1) + w(C),

implying that w(C) < 0. �
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