
Institut for Matematik og Datalogi
Syddansk Universitet

February 25, 2022
JBJ

DM867 – Spring 2022 Weekly Note 5

Stuff covered in week 8

• Non-bipartite Matching. PS Chapter 10.4-10.5 and SCH 5.1-5.2 (We will not cover
weighted non-bipartite matching, but you should know that this problem is solvable
in polynomial time).

• We also covered the more general f -factors, where we have a graph G = (V,E) and
a specification f(v) ≤ d(v) at every vertex and we want to select a subset E ′ of E so
that these induce a spanning graph F = (V,E ′) with dF (v) = f(v) for each v ∈ V .
Such an F is called an f -factor of G. In particular, when f(v) ≡ k for all v ∈ V we
call F a k-factor of G.

To see that this problem can be solved using a matching algorithm, lets create a new
graph H from G = (V,E) and f as follows: Replace each vertex v of G with two sets
A(v) and B(v) of vertices with |A(v)| = d(v) and |B(v)| = d(v) − f(v). The edges
of H consist of all possible edges between A(v), B(v) for all v ∈ V and for each edge
uw ∈ E, put a single edge between A(u) and A(w) such that each vertex of A(v),
v ∈ V belongs to exactly one such edge. Now it is easy to show that H has a perfect
matching if and only if G has an f -factor.
This is a polynomial reduction (remind yourself why!) so we get a polynomial algo-
rithm for checking the existence of an f -factor in a given graph from the polynomial
algorithm for the maximum matching problem.

Lectures in Week 9

• Lovász’s splitting theorem and augmenting the edge-connectivity of a graph. This is
covered by notes at the end this weekly note.

• Arc-disjoint branchings. This is BJG Section 9.5.

• Orientations with degree bounds. BJG Section 8.7 (we will cover pages 446 to 447
top as well as Theorem 8.7.3 and its proof).

• Finding subdigraphs with prescribed in- and out-degrees. BJG Section 3.11.3.

• 2-processor scheduling Schrijver Application 5.2

1

Problems and applications to discuss on Friday in Week 9

• BJG 3.33, 3.34, 3.35

• Consider Section 3.11.3 in BJG and use this to show that in the case when G is a
bipartite graph we can solve the f -factor problem by transforming the problem into
a maximum flow problem.

• SCH 5.1, 5.4

• SCH 5.7 page 84.

• PS Problem 5. page 243.

• PS Problem 11. page 245.

• 2-processor scheduling: Suppose we are given a task consisting of 8 jobs all of which
take unit time. The jobs are called a, b, c, d, e, f, g, h and have the following prece-
dence relations, where we only list the one that do not follow by transitivity (if x is
before y and y before z, then automatically x is before z so we don’t write it in the
list):

{a < c, a < f, b < d, c < e, c < g, d < f, f < e, f < g, f < h}

Find an optimal schedule for processing on 2 processors and prove that it is optimal.

• A matroid M = (S,F) is connected if for any non-trivial partition S = S1 ∪ S2 there
exist a circuit C of M with C ∩ Si 6= ∅ for i = 1, 2.
Now consider a graph G = (V,E) and the graphic matroid M = (E, I) where E ′ ∈ I
if and only if H = (V,E ′) (the subgraph induced by E ′) has no cycle. Show that this
matroid is connected if and only if G is 2-connected.

• PS Problem 10. page 303.

First set of exam problems
These will probably be posed in Week 11 and must be handed in again Friday April
8th. You are allowed to work in groups of up to 3 persons and different groups may not
communicate about the problems.

2

Notes on Edge-connectivity augmentation

Recall that for a graph G = (V,E) and vertices x, y of G we denote by λ(x, y) the maximum
number of edge-disjoint (x, y)-paths in G. By Menger’s theorem we know that λ(x, y) is
equal to the minimum degree d(X) of a set X ⊂ V which contains x but not y.

By a splitting off a pair of edges su, sv incident with the same vertex s in a graph G we
mean the operation that deletes these two edges and adds a new edge uv (possibly parallel
to one or more already existing edges between u and v).

Let k ≥ 2 be an integer and let G = (V + s, E) be a graph with a special vertex s so that

λ(x, y) ≥ k for every choice of x, y ∈ V (1)

We say that a splitting (su, sv) is feasible if (1) holds for all x, y ∈ V , where G′ is the
graph we obtain by the splitting opereation for su, sv.

Recall that following holds for all X, Y ⊆ V (here d(X, Y) denotes the number of edges
with one end in X − Y and the other in Y −X and d(X ∩ Y, V + s − (X ∪ Y)) denotes
the number of edges between X ∪ Y and the complement of X ∪ Y):

(i) d(X) + d(Y) = d(X ∩ Y) + d(X ∪ Y) + 2d(X, Y)

(ii) d(X) + d(Y) = d(X − Y) + d(Y −X) + 2d(X ∩ Y, V + s− (X ∪ Y))

Theorem 1 Let k ≥ 2 be an integer and let G = (V + s, E) be a graph with a special
vertex s such that d(s) is possitive and even and (1) holds for G.

Then for every edge e = su incident with s there exists another edge f = sv incident with
s such that the splitting (su, sv) is feasible.

Proof:

Let us call a set X ⊂ V dangerous if d(X) ≤ k + 1. Observe that if u, v are neighbours
of s that lie in the same dangerous set, then the splitting (su, sv) is not feasible since after
this, the set X would have degree k − 1, implying that λG′(x, y) ≤ k − 1 for every x ∈ X
and y ∈ V −X. Conversely, if there is no dangerous set containing both u and v then the
splitting (su, sv) is feasible since (1) still holds after the splitting.

Let e = su be fixed and suppose that there is no other edge sv such that the splitting
(su, sv) is feasible. By the remark above, this means that every neighbour v 6= u of s is
contained in some dangerous set Xv that also contains u.

Now let L be a family of maximal dangerous sets (they are not contained in any bigger set
which is also dangerous) all of which contain u and so that every other neighbour v 6= u
of s is contained in some X ∈ L. Furthermore assume that |L| is minimum with that
property (so L contains the minimum number of dangerous sets among all such families).
We claim that L has the following properties:

3

(a) For all distinct members X, Y ∈ L such that X ∪ Y 6= V we have d(X ∩ Y) = k,
d(X ∪ Y) = k + 2 and d(X, Y) = 0.

(b) For all distinct members X, Y ∈ L we have d(X − Y) = k = d(Y − X) and d(X ∩
Y, V + s−X ∪ Y) = 1.

(c) For every choice of distinct members X, Y ∈ L and distinct members X ′, Y ′ ∈ L we
have X ∩ Y = X ′ ∩ Y ′.

It is easy to check that (a) and (b) follow from (i) and (ii). To prove that (c) holds, we
argue as follows. Let W = X ∩ Y and W ′ = X ′ ∩ Y ′ and suppose W 6= W ′. By (a) both
sets have degree k and contain u (all sets in L contain u) so if both W −W ′ and W ′ −W
are non-empty, then we would have

k + k = d(W) + d(W ′)

= d(W −W ′) + d(W ′ −W) + 2d(W ∩W ′, V + s−W ∪W ′)

≥ k + k + 2,

a contradiction. Hence we may assume that W ′ ⊆ W and we just need to show that also
W ⊆ W ′. If this is not the case, then {X ′, Y ′} 6= {X, Y } so without loss of generality (and
by the minimality fo L we have X ′ −W 6= ∅ and W −X ′ 6= ∅ so we can apply (ii) to W
and X ′ and get

k + (k + 1) ≥ d(W) + d(X ′)

= d(W −X ′) + d(X ′ −W) + 2d(W ∩X ′, V + s−W ∪X ′)
≥ k + k + 2,

a contradiction again (here we used that W and X ′ both contain the vertex u. Thus we
have proved (c).

Let L = {X1, X2, . . . , Xr}, for some r ≥ 1. It follows from (c) and (i) that there exists a
set Z ⊂ V such that u ∈ Z, d(Z) = k and Xi ∩Xj = Z for all 1 ≤ i < j ≤ r.

Note that we cannot have r = 1 because this and the fact that d(s) is even would imply
that d(V −X1) = d(X1)−d(s,X1)+d(s, V −X1) ≤ (k+1)−2+0 = k−1, contradicting (1).

Suppose next that r ≥ 3. We claim that this leads to the conclusion that d(Z) = 1,
contradicting (1) as k ≥ 2. First it follows from (b) that there is precisely one edge from

4

Z to V + s − (X1 ∪ . . . ∪ Xr). Thus it suffices to show that d(Z,Xi − Z) = 0 for all
i = 1, 2, . . . , r. This follows from (b) applied to two other members Xj, Xh of L, because
here (b) implies that d(Xj ∩Xh, V + s− (Xj ∪Xh)) = 1 and the edge su is the only edge
between Xj ∪ Xh and the complement of this set (which contains Xi − Z since Z is the
pairwise intersection of every pair of distinct sets in L).

It remains to consider the case r = 2. Let ai = d(s,Xi − Z), i = 1, 2, that is, ai is the
number of edges between s and Xi − Z. By (b) we see that d(s, Z) = 1 so su is the only
edge between s and Z. Now it follows from the fact that d(s) is even and X1∪X2 cover all
neighbours of s that a1 6= a2. Without loss of generality we have a1 > a2. But then we have
that d(V −X1) = d(X1)−d(s,X1)+d(s, V −X1) ≤ k+1−(a1+1)+a2 = k−(a1−a2) ≤ k−1,
contradicting (1).

Thus in all cases we reached a contradiction to the assumption that there was no neighbour
v 6= u of s such that the splitting (su, sv) is feasible. So such a splitting exists and the
proof is complete. 2

By a subpartition of a set S we mean a collection of disjoint subsets of S.

Theorem 2 Let k ≥ 2 be an integer and let H = (V,E ′) be a graph which is not k-edge-
connected. Then the minimum number of new edges we need to add to H such that the
new graph H ′ = (V,E ′ ∪ F) is k-edge-connected is dαH,k

2
e where

αH,k = max
F

∑
X∈F

(k − dH(X)) (2)

and the maximum is taken over all subpartitions of V .

Proof: Give give a constructive proof due to A. Frank: Let G′ be obtained from H by
adding a new vertex s and k parallel edges between s and every vertex in V . Clearly G′

satisfies (1). Denote the vertices of V by v1, v2, . . . , vn. Let i = 1 and delete as many edges
between s and v1 as possible so that (1) still holds. Then let i = 2 and do the same with
edges between s and v2. Continuing this way until we have processed all vertices in V we
obtain a graph G = (V + s, E ′ ∪ E ′′) where (1) still holds and every edge incident to s
enters a tight set, where we call a subset X ∈ V tight if dG(X) = k. This is true because
otherwise we could have deleted the edge and still satisfied (1).

Claim If X and Y are tight sets, then

(I) If X ∪ Y 6= V , then X ∩ Y and X ∪ Y are also tight

(II) X − Y and Y −X and both tight and d(X ∩ Y, V + s− (X ∪ Y)) = 0

It is easy to check that (I) follows from (i) and (1) and (II) follows from (ii) and (1).

5

We first prove that the number of edges between s and V (that is |E ′′|) is exactly αH,k.

Let F be a collection of tight sets that cover all edges incident to s and so that |F| is
minimum over all such families and among families achieving this minimum let F be such
that

∑
X∈F |X| is minimized. If |F| ≥ 3 or F = {X, Y } with X ∪ Y 6= V , then it follows

from the minimality of F and (I) that the sets in F are disjoint so F is a subpartition of V .
If F = {X, Y } with X ∪ Y = V , then it follows from (II) and the choice of F (minimizing
the sum of the sizes of the sets) that Y = V − X so F is again a subpartition. Now we
have

d(s) =
∑
X∈F

d(s,X)

=
∑
X∈F

(k − dH(X))

≤ αH,k

On the other hand we also have d(s) ≥ αH,k since we must add at least (k − d(X) edges
from s to any set X belonging to the subpartition F ′ that achieves equality in (2). Thus
we have d(s) = αH,k.

Now we are ready to find a set of dαH,k

2
e new edges whose addition to H makes the resulting

graph k-edge-connected.

If d(s) is odd in G, then we add an new edge from s to v1 and call the resulting graph G.
Hence we can assume below that d(s) is even in G = (V + s, E), where E is either E ′ ∪E ′′
or E = E ′ ∪ E ′′ ∪ {sv1}. Now we can apply Theorem 1 d(s)

2
times, each time choosing a

neighbour u of s in the current graph and finding another neighbour v of s such that the
splitting (su, sv) is feasible, that is, (1) still holds after deleting su, sv and adding the edge

uv. The resulting graph H ′ = (V,E ′ ∪ F) is k-edge-connected and we added d(s)
2

= dαH,k

2
e

new edges. 2

We now show that the proof above can be turned into an efficient algorithm for finding a
minimum set of new edges whose addition to a given graph H which is not k-edge-connected
makes the resulting graph k-edge-connected.

The two steps we need to show how to do efficiently are:

(A) Given an edge su incident with the special vertex s; find another edge sv such that
the splitting (su, sv) is feasible.

(B) In the deletion process starting from the graph where s is joined to each vertex by
k parallel edges, we need to be able to determine how many edges we can delete
between the current vertex vi and s in step i of the deletion process.

6

We first deal with (A): Let u be a fixed neighbour of s. As we have seen above, in order to
check whether (su, sv) is a feasible splitting, we have to check whether d(X) ≥ k + 2 for
every proper subset X of V which contains u, v. By Menger’s theorem this is equivalent to
checking whether λ(z, t) ≥ k+2 for every t ∈ V −{u, v} in the graph Gu,v which we obtain
by contracting the set {u, v} to one vertex z. To calculate λ(z, t) for a fixed t ∈ V −{u, v}
we make the flow network: N that we obtain from Gu,v by replacing each edge pq by a
two directed arcs p→ q, q → p each with capacity 1 and adding a new arc from s to t with
capacity ∞. The last arc ensures that every finite (z, t)-cut (S, S̄) in N will have s ∈ S̄.
By construction, the capacity of a finite (z, t)-cut (S, S̄) is exactly d(S) so the capacity of
a minimum (z, t)-cut (S, S̄) is exactly λ(z, t). Hence we can check whether (su, sv) is a
feasible splitting by performing at most |V | − 2 maximum flow calculations (one for each
t ∈ V − {u, v}).
Now to (B): For each i = 0, 1, . . . , n − 1 we let Gi be the graph in the beginning of the
i’th deletion step, that is, we are ready to find out how many edges of the kind svi we can
delete without violating (1). So G0 = G. After the deletion we must have d(X) ≥ k for
every proper subset of V that contains vi so we can delete p edges between vi and s if and
only if d(X) ≥ k + p for every proper subset of V that contains vi. As above we can find
the minimum degree of a proper subset X containing vi by maxflow calculations, this time
|V | − 1 of these, corresponding to the |V | − 1 choices of a vertex t to be outside X and
fining a maximum (vi, t)-flow. Let ρ be the minimum value of the |V | − 1 maxflows that
we found. Then we can delete min{k, ρ− k} edges between s and vi.

Corollary 1 Let k ≥ 2 be a fixed integer. There exists a polynomial algorithm that takes
as input a graph H on n vertices and m edges which is not k-edge-connected and produces
an optimal augmentation of H to a k-edge-connected graph H∗ in time O(nMF (n,m)),
where MF (n,m) is the running time of the fastest algorithm for finding a maximum flow
between two vertices p, q in a network.

It is known that MF (n,m) is O(nm) so the complexity of the algorithm above is O(n2m).

7

