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Second set of exam problems
These are now posted on itslearning The solutions must be handed in by May 2nd at 9.00
a.m.

Stuff covered in Week 13, 2022

• The Steiner tree problem. We use Chapter 42 in the notes by Khuller on the home
page

• The k-path problem for directed graphs. BJG Sections 9.1-9.2. In particular I proved
that for fixed k, the k-path problem can be solved in polynomial time for acyclic
digraphs

• The proof that the 2-path problem is NP-complete for digraphs. BJG Section 9.2.

• The k-path problem for undirected graphs. I said some words about this. The most
important thing is that the k-path problem is polynomially solvable for undirected
graphs for any fixed k. Robertson and Seymour proved in a series of papers that there
is an algorithm for the k-path problem with a running time which is O(f(k)n3). Here
f(k) is a very fast growing function of k, but when k is fixed f(k) is a constant so
the running time is O(n3). This implies that we can solve problems where we look
for a subdivision of a given graph H in another graph G in polynomial time. I also
illustrated how to use the polynomial algorithm for the k-path problem in acyclic
digraphs to solve a similar problem for acyclic digraphs. There are notes about both
problems at the bottom of this note.

Classes in Weeks 14-16
There are no classes in weeks 14 and 15.

• The intersection problem for 3 or more matroids is NP-complete. PS 12.6.3

• Weighted Matroid intersection. PS 12.6.1. We will just mention that this problem can
be solved in polynomial time for two matroids and give an application to minimum
cost out-branchings.

• Chordal graphs (originally called triangulated graphs). These are graphs with no
induced cycle of length more than 3. They will play an important role in the study
of tree-width. The presentation is based on Chapter 4 in the book ’Algorithmic
Graph Theory and Perfect Graphs by M.C. Golumbic. This chapter is available from
the home page.
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• We will define tree-width and tree-decompositions of graphs. These constitute a very
important tool to obtain efficient algorithms for classes of graphs with low tree-width.
This is based on Chapter 10 in the book:”Invitation to fixed parameter algorithms”
by R. Niedermeier, Oxford 2006. This is available from the home page. We will
continue on tree-width in Week 17.

1 Notes on finding subdivisions for (di)graphs in (acyclic

di)graphs

Theorem 1 (Robertson and Seymour, 1995) For every fixed natural number k there
is an algorithm of complexity1 O(n3) for deciding for a given input graph G and distinct
vertices s1, s2, . . . , sk, t1, t2, . . . , tk of G whether G has vertex-disjoint paths P1, P2, . . . , Pk

such that Pi is a (si, ti)-path.

A subdivision of a graph H = (VH , EH) in a graph G = (V,E) is a subgraph G′ = (V ′, E ′)
of G and a mapping of H to G′ with the property that its is 1-1 on the vertices of H and
every edge e = uv ∈ EH is mapped to a path Puv from f(u) to f(v) such that every vertex
of Puv − {f(u), f(v)} has degree 2 in G′ (we replace the edge uv by a path in G′ and no
two paths corresponding to different edges of H intersect except possibly at their ends).
This definition also makes sense if H has loops as such a loop at u corresponds to a cycle
through f(u) in G′. A subdivision of a digraph is defined analogously.

Corollary 1 For every graph H = (VH , EH) there exists a polynomial algorithm AH which
for a given input graph G = (V,E) decides whether G contains a subdivision of H.

Proof: Let H = (VH , EH) be given and assume first that we have fixed a 1-1 mapping
f : VH → V . If there is an edge uv ∈ EH such that f(u)f(v) is an edge in G (possibly
u = v and then f(u)f(u) is a loop in G), then we can use this edge to realize the path
corresponding to the edge uv and consider H minus this edge and G minus the edge
f(u)f(v). Hence we can first trim off (select) such pairs and then assume that f(VH) (the
set of images of VH) is an independent set in G.

Fix an ordering of the edges around each vertex in H: if u has k neighbours then we label
these vu,1, vu,2, . . . , vu,k (notice that the same vertex gets many different labels, one for each
of its neighbours in VH). Clearly for a given edge e = uv ∈ EH this gives two labels luv
and lvu (the number it has in u’s labelling and in v’s labelling). Now consider the graph
GH that we obtain from G by replacing each vertex f(u) by dH(u) copies, that is, replace
f(u) by an independet set F (u) = {f(u)1, f(u)2, . . . f(u)dH(u)} on dH(u) vertices and join
each of these to all neighbours of f(u) in G.

1The constant here depends heavily on k: the complixity is O(f(k)n3) where f(k) grows VERY fast in
k.
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We claim that now G contains a H-subdivision G′ where the vertices of H are {f(u)|u ∈
VH} if and only if GH contains a collection of disjoint paths {Puv|uv ∈ EH} where Puv

starts in f(u)luv and ends in f(v)lvu . This is easy to see: if the paths exist in GH then we
obtain G′ by contracting (identifying) each set F (u) to the single vertex f(u). Conversely,
if we are given a subdivision G′ of H then we obtain the paths by splitting up each f(u)
into dH(u) distinct vertices. Thus it follows from Theorem 1 that for a fixed 1-1 mapping of
V (H) to V (G) we can decide in time O(n3) whether this mapping extends to a subdivision
of H in G. Thus, in polynomial time, we can check for all the

(|V (G)|
|V (H)|

)
1-1 mappings of

V (H) to V (G) to see whether at least one extends to a homeomorphism of H to G in
polynomial time (H is fixed so its size is a constant). 2

Theorem 2 (Fortune, Hopcroft and Wyllie, 1980) For any fixed natural number k
there exists a polynomial algorithm for deciding whether a given acyclic digraph D = (V,A)
with specified vertices s1, s2, . . . , sk, t1, t2, . . . , tk has vertex-disjoint paths P1, P2, . . . , Pk such
that Pi is a (si, ti)-path.

Corollary 2 For every acyclic digraph H = (VH , AH) there exists a polynomial algorithm
for deciding whether a given acyclic digraph D = (V,A) contains a subdivision of H.

Proof: As above it is sufficient to show that we can decide in polynomial time whether a
fixed 1-1 mapping of V (H) to V (D) extends to a homoemorphism of H to D so we assume
below that a 1-1 mapping of V (H) to V (G) is given.

As above we may assume that the vertices of H are mapped to an independent set in D (if
f(u)f(v) is an arc and uv ∈ AH then use f(u)f(v) to realize that path and delete the arc
uv from AH . If f(u)f(v) is an arc of D and uv is not and arc of AH , then we can never
use the arc f(u)f(v) in a homeomorphism (because paths must be internally disjoint) and
hence we can delete the arc f(u)f(v) from D without changing the problem. Finally if uv
is an arc of H and f(v)f(u) is an arc of D, then there cannot exist a solution for the given
mapping f as this would imply that D contained a cycle.).

For each vertex u ∈ VH fix and ordering of the arcs entering u and an ordering of the arcs
leaving u: We label the d−H(u) in-neighbours of u v−u,1, v

−
u,2, . . . , v

−
u,d−H(u)

and we label the

d+H(u) out-neighbours of u by v+u,1, v
+
u,2, . . . , v

+

u,d+H(u)
. As in the proof above, for a given arc

e = uv ∈ AH this gives two labels l+uv and l−uv (the number it has in u’s out-labelling and
in v’s in-labelling). Given the 1-1 mapping f : VH → V (G) we make a new acyclic digraph
GH by replacing each vertex f(u), u ∈ VH by two sets If(u) = {v−u,1, v−u,2, . . . , v−u,d−H(u)

} and

Of(u) = {v+u,1, v+u,2, . . . , v+u,d+H(u)
} and joing every in-neighbour x of f(v) in G to every vertex

y in If(v) by an arc x → y and every vertex p of Of(v) to every out-neighbour q of f(v)
in G (it is possible that one of the sets If(v), Of(v) is empty in which case we add no arcs
corresponding to that set).

Now it is easy to show that D contains a subdivision of H if and only if DH contains vertex
disjoint paths {Puv|uv ∈ AH} where Puv starts in l+uv and ends in l−uv. 2
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