Coloring squares of planar graphs with prescribed girth

Riste Škrekovski

(join work with Z. Dvorak, D. Kral, P. Nejedly, M.Tancer)
The square of a graph G is the graph with the same vertex set as G and two distinct vertices are adjacent iff they are on distance at most 2 in G.

Wang and Lih conjectured that for every $g \geq 5$, there exists a number $M(g)$ such that the chromatic number of the square of every planar graph of girth at least g and maximum degree $\Delta \geq M(g)$ is $\Delta+1$. In the talk will be disproved this conjecture for $g=5,6$ and prove the existence of the number $M(g)$ for $g \geq 7$. We also show that the square of every planar graph of girth at least six and sufficiently large maximum degree Δ is $(\Delta+2)$-colorable. The talk will conclude by posing few problems.

