Dense triangle-free graphs are four-colourable: A solution to the Erdős-Simonovits problem
 Stephan Brandt

(joint work with Stéphan Thomassé)

In 1972, Erdős and Simonovits conjectured that triangle-free graphs with n vertices and minimum degree $\delta>n / 3$ are 3 -colourable. Hajnal gave a construction based on Kneser graphs, showing that for any $c<1 / 3$ the chromatic number can be arbitrarily large among the triangle-free graphs with $\delta>c n$. In 1982 Häggkvist found a counterexample based on the 4-chromatic Grötzsch graph. Jin proved in 1993, that the original statement is true if $n / 3$ is replaced by $10 n / 29$ which is sharp. Moreover he conjectured that the chromatic number can be arbitrarily large for triangle-free graphs with $\delta>n / 3$. Recently, Brandt showed that 4 is an upper bound for the chromatic number of maximal triangle-free r-regular graphs with $r>n / 3$, Thomassen proved that for any $c>1 / 3$ the chromatic number of every triangle-free graph with $\delta>c n$ is bounded by a constant depending on c, and Luczak improved this statement, showing that every such graph is homomorphic with a trianglefree graph on constantly many vertices, applying the Regularity Lemma.

We prove the original problem with chromatic number 4 in place of 3 by determining the homomorphically minimal subgraphs of the maximal triangle-free graphs with $\delta>n / 3$. This class turns out to be a minor extension of a class described by Brandt and Pisanski in 1997.

