Edge partition of planar graphs into two outerplanar graphs

D. GONÇALVES

LaBRI, U.M.R. 5800, Université Bordeaux I 351, cours de la Libération 33405 Talence Cedex, France. goncalve@labri.fr

November 3, 2005

Abstract

An outerplanar graph is a graph that has a planar embedding in which all the vertices are in the outer-boundary. G.Chartrand, D.Geller and S.Hedetniemi defined the graphs with property P_n as the graphs having no subgraph homeomorphic to K_{n+1} or $K_{p,q}$, with $p = \lceil (n+2)/2 \rceil$ and $q = \lfloor (n+2)/2 \rfloor$. The graphs with property P_2 , P_3 and P_4 are respectively the forests, the outerplanar graphs and the planar graphs. Chartrand *et al.* conjectured that every graph with property P_m can be edge partitioned into m - n + 1graphs with property P_n . Gutin *et al.* proved that this conjecture does not hold in the general case. Here we prove the case where m = 4 and n = 3. This is, that any planar graph G = (V, E) has a bipartition of its edge set, $E = A \cup B$, such that the two induced graphs, G[A] and G[B] are outerplanar.