Longest path-partitions in generalizations of tournaments

Jørgen Bang-Jensen^{*}

Morten Hegner Nielsen[†]

Anders Yeo[‡]

Abstract

We consider the so-called Path Partition Conjecture for digraphs which states that for every digraph, D, and every choice of positive integers, λ_1, λ_2 , such that $\lambda_1 + \lambda_2$ equals the order of a longest directed path in D, there exists a partition of D into two digraphs, D_1 and D_2 , such that the order of a longest path in D_i is at most λ_i , for i = 1, 2.

We prove that certain classes of digraphs, which are generalizations of tournaments, satisfy the Path Partition Conjecture and that some of the classes even satisfy the conjecture with equality.

^{*}Department of Mathematics and Computer Science, University of Southern Denmark, DK-5230 Odense, Denmark

 $^{^\}dagger \mathrm{Department}$ of Mathematics and Computer Science, University of Southern Denmark, DK-5230 Odense, Denmark

[‡]Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom