Longest path-partitions in generalizations of tournaments

Jørgen Bang-Jensen* Morten Hegner Nielsen ${ }^{\dagger}$ Anders Yeo^{\ddagger}

Abstract

We consider the so-called Path Partition Conjecture for digraphs which states that for every digraph, D, and every choice of positive integers, λ_{1}, λ_{2}, such that $\lambda_{1}+\lambda_{2}$ equals the order of a longest directed path in D, there exists a partition of D into two digraphs, D_{1} and D_{2}, such that the order of a longest path in D_{i} is at most λ_{i}, for $i=1,2$.

We prove that certain classes of digraphs, which are generalizations of tournaments, satisfy the Path Partition Conjecture and that some of the classes even satisfy the conjecture with equality.

[^0]
[^0]: *Department of Mathematics and Computer Science, University of Southern Denmark, DK-5230 Odense, Denmark
 ${ }^{\dagger}$ Department of Mathematics and Computer Science, University of Southern Denmark, DK-5230 Odense, Denmark
 ${ }^{\ddagger}$ Department of Computer Science, Royal Holloway, University of London, Egham, Surrey, TW20 0EX, United Kingdom

